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Compute ො𝜋 given ( ෠𝑃, 𝑟) using Value iteration or Policy iteration.

SAN total samples

RL with generative data



Simulation Lemma

4
Model accuracy

Where 𝑉෠𝑃
𝜋 =  ෠𝑉𝜋 for simplicity. 

Infinite horizon setting



Sample complexity of RL using 
generative model

• With probability greater than 1-

𝑉∗ − 𝑉 ෝ𝜋∗
= 𝑂

𝛾

(1 − 𝛾)2

𝑆 ln(𝑆𝐴/𝛿)

𝑁

• Need 𝑁 ~
𝑆

𝜖2(1−𝛾)4 ln
𝑆𝐴

𝛿
 to get 𝜖-accurate in policy value w.p. 1-

• Total samples SAN ~ 
𝑆2𝐴

𝜖2(1−𝛾)4 ln
𝑆𝐴

𝛿
    matches parameter count 

argument

• Can improve scaling to SA (drop S term) if we only care about model 
error for high value state-action pairs - analyze model error 
projected on V* 5



RL with online data

• Tabular setting (finite S, A)

• Finite horizon

• Non-stationary

• Only reset to initial state s0 ~ 

• For simplicity,  is point mass at s0
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RL with online data
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and obtains trajectory

Can’t guarantee fixed N samples 
from each state, action pair



RL with online data

➢ Need exploration (unlike generative model setting) to encourage 

visiting unexplored state-action pairs starting from s0, while 

exploiting promising state-action pairs

Attempt 1: Treat MDP as a Multi-armed bandit problem and run UCB

 Doesn’t work. Shouldn’t treat policies as independent arms — 
they do share information

Attempt 2: The Upper Confidence Bound Value Iteration Algorithm 

     (UCB-VI)
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Attempt 2: UCB-VI

• Upper Confidence Bound Value Iteration (UCB-VI)
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At each iteration n



UCB-VI: Model est. & reward bonus
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where

Reward bonus

Not fixed N samples



UCB-VI: Value iteration

Value iteration at episode n using 
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For h = H-1, H-2, …, 1



UCB-VI
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UCB-VI regret bound
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Regret

Dependency on H and S are suboptimal; but the same algorithm 

can achieve 𝐻2 𝑆𝐴𝑁 in the leading term
[Azar et.al 17 ICML, and AJKS book Ch 7]



Proof sketch
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Model error projected on V*
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Bonus 𝑏ℎ
𝑛(𝑠, 𝑎)

Intuition:



Optimism via induction
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w.p. > 1-



Bounding regret using optimism
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Bounding regret using Simulation lemma
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Simulation lemma for finite horizon: Value of policy n under ෠𝑃 vs. P at step h

Proof: 
 



Bounding regret using Simulation lemma
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w.p. > 1-



Bounding regret using Simulation lemma
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w.p. > 1-



Regret bound UCB-VI
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Total regret



Regret bound UCB-VI

22



High-level idea: Exploration-
Exploitation tradeoff
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RL in generative vs. online setting

Generative

reset to any state
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Online

reset to initial state only



RL in generative vs. online setting

Generative

reset to any state

obtain fixed amount of data for each 
state-action pair
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Online

reset to initial state only

online roll-out don’t guarantee fixed 
amount of data per (s,a)



RL in generative vs. online setting

Generative

reset to any state

obtain fixed amount of data for each 
state-action pair

plug-in and exploit
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Online

reset to initial state only

online roll-out don’t guarantee fixed 
amount of data per (s,a)

explore-exploit using confidence



RL in generative vs. online setting

Generative

reset to any state

obtain fixed amount of data for each 
state-action pair

plug-in and exploit

Regret, 𝐸[𝑉∗ − 𝑉ෝ𝜋∗
] ≤ 𝜖  

if scalar samples SAN = ෨𝑂
𝑆2𝐴

𝜖2(1−𝛾)4
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Online

reset to initial state only

online roll-out don’t guarantee fixed 
amount of data per (s,a)

explore-exploit using confidence

Regret, 𝐸[σ𝑛=1
𝑁 (𝑉∗−𝑉𝜋𝑛)]  ≤ 𝑁𝜖 

if scalar samples NH = ෨𝑂
𝐻5𝑆2𝐴

𝜖2  

 



RL in generative vs. online setting

Generative

reset to any state

obtain fixed amount of data for each 
state-action pair

plug-in and exploit

Regret, 𝐸[𝑉∗ − 𝑉ෝ𝜋∗
] ≤ 𝜖  

if scalar samples SAN = ෨𝑂
𝑆2𝐴

𝜖2(1−𝛾)4

       improve to remove S, 1/(1-)
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Online

reset to initial state only

online roll-out don’t guarantee fixed 
amount of data per (s,a)

explore-exploit using confidence

Regret, 𝐸[σ𝑛=1
𝑁 (𝑉∗−𝑉𝜋𝑛)]  ≤ 𝑁𝜖 

if scalar samples NH = ෨𝑂
𝐻5𝑆2𝐴

𝜖2  
 

improve to remove S, H (tighter 
bonus via Bernstein concentration)

Online worse by H since assume non-stationary at each of the H steps!



Next Questions

➢How to handle unknown state transition and reward 
functions?

➢How to handle continuous states and actions?
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Done!

Next
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