
10-704: Information Processing and Learning Fall 2016

Lecture 9: Sept 28
Lecturer: Siheng Chen

Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy
of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Entropy Rate of Stochastic Processes

So far we have mostly talked about entropy of a random variable. We can extend that notion to a stochastic
process, which is simply an indexed sequence of random variables.

Entropy of random variable X is H(X), the joint entropy of X1 . . . Xn is then

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|Xi−1 . . . X1) chain rule

≤
n∑
i=1

H(Xi) since conditioning does not increase entropy

= nH(X) if the variables are identically distributed

If the random variables are also independent, then the joint entropy of n random variables increases with n.
How does the joint entropy of a sequence of n random variables with possibly arbitrary dependencies scale?

To answer this, we consider a stochastic process which is an indexed sequence of random variables with
possibly arbitrary dependencies. We define

Entropy rate of a stochastic process {Xi} =: X as

H(X) := lim
n→∞

H(X1, . . . , Xn)

n

i.e. the limit of the per symbol entropy, if it exists.

Stationary stochastic process: A stochastic process is stationary if the joint distribution of any subset
of the sequence of random variables is invariant with respect to shifts:

p(X1, . . . , Xn) = p(X1+l, . . . , Xn+l) ∀l, ∀n

Theorem 9.1 For a stationary stochastic process, the following limit always exists

H(X) := lim
n→∞

H(X1, . . . , Xn)

n

i.e. limit of per symbol entropy, and and is equal to

H ′(X) := lim
n→∞

H(Xn|Xn−1, . . . , X1)

i.e. the limit of the conditional entropy of last random variable given past.

9-1

9-2 Lecture 9: Sept 28

We also consider Markov processes where kth order Markov process satisfies

P (Xn+1|XnXn−1 . . . X1) = P (Xn+1|Xn . . . Xn−k+1)

i.e. the dependence is only over last k variables in the sequence.

For stationary first order Markov processes:

H(X) = lim
n→∞

H(Xn|Xn−1) = H(X2|X1)

Theorem 9.2 Burg’s Maximum Entropy Theorem
The max entropy rate stochastic process {Xi} satisfying the constraints

E[XiXi+k] = αk for k = 0, 1 . . . p ∀i (?)

is the Gauss-Markov process of the pth order, having the form:

Xi = −
m∑
i=1

akXi−k + Zi,

where Zi
iid∼ N (0, σ2), ak and σ2 are parameters chosen such that constraints ? are satisfied.

Note: The process {Xi} is NOT assumed to be (1) zero-mean, (2) Gaussian or (3) stationary.
Note: The theorem states that AR(m) auto-regressive Gauss-Markov process of order m arise as natural
solutions when finding maximum entropy stochastic processes under second-order moment constraints up to
lag m.

Proof: Let {Xi} be any stochastic process that satisfies constraints ?, {Zi} be any Gaussian process that
satisfies constraints ?, and {Z ′i} be a pth order Gauss-Markov process with the same some distribution for
all orders up to p. (Existence of such a process will be established after the proof.)

Since the multivariate normal distribution maximizes entropy over all vector-valued random variables under
a covariance constraint, we have:

H(X1, . . . , Xn) ≤ H(Z1, . . . , Zn)

= H(Z1, . . . , Zp) +

n∑
i=p+1

H(Zi|Zi−1, . . . , Z1) (chain rule)

≤ H(Z1, . . . , Zp) +

n∑
i=p+1

H(Zi|Zi−1, . . . , Zi−m) (conditioning does not increase entropy)

= H(Z ′1, . . . , Z
′
p) +

n∑
i=p+1

H(Z ′i|Z ′i−1, . . . , Z ′i−m)

= H(Z ′1, . . . , Z
′
p)

⇒ lim
p→∞

1

p
H(X1 . . . Xp) ≤ lim

p→∞

1

p
H(Z ′1 . . . Z

′
p)

Lecture 9: Sept 28 9-3

Existence: Does a pth order Gaussian Markov process exists s.t. (a1 . . . ap, σ
2) satisfy ??

XiXi−l = −
p∑
k=1

akXi−kXi−l + ZiXi−l

E[XiXi−l] = −
p∑
k=1

akE[Xi−kXi−l] + E[ZiXi−l]

Let R(l) = E[XiXi−l] = E[Xi−lXi] = αl be the given p + 1 constraints. Then we obtain The Yule-Walker
equations - p+1 equations in p+1 variables (a1 . . . ap, σ

2):

for l = 0 R(0) = −
p∑
k=1

akR(−k) + σ2

for l > 0 R(l) = −
p∑
k=1

akR(l − k) (since Zi ⊥ Xi−l for l > 0.)

The solution to the Yule-Walker equations will determine the pth order Gaussian Markov process.

9.2 Data Compression / Source coding

Figure 9.1 shows a source coding schema.

Figure 9.1: Coding schema.

Source code: A source code C is a mapping from the range of a random variable or a set of random
variables to finite length strings of symbols from a D-ary alphabet, that is

C : X → D?,

and the code C(X) for a symbol X is an element in D?.

Instead of encoding an individual symbol, we can also encode blocks of symbols together. A length n block
code encodes n length strings of symbols together and is denotes by C(X1, · · · , Xn) =: C(Xn). We then
define the extension of the code using concatenation as C(Xn) = C(X1)...C(Xn)

Expected length of a source code denoted by L(C) is given as follows:

L(C) =
∑
x∈X

p(x)l(x)

where l(x) is the length of codeword c(x) for a symbol x ∈ X , and p(x) is the probability of the symbol.

Several classes of symbol codes have appealing properties that are widely used. For example,

9-4 Lecture 9: Sept 28

• Non-singularity : ∀X1 6= X2 ⇒ C(X1) 6= C(X2)

• Unique-decodability : ∀Xn
1 6= Xm

2 ⇒ C(Xn
1) 6= C(Xm

2)

• Self-punctuating (Prefix) : ∀X1 6= X2 ⇒ C(X1) /∈ Prefix(C(X2))

Note that unique decodability implies non-singularity and self-punctuating implies unique decodability. Self-
punctuating codes are also called instantaneous or prefix codes. For unique decodability, we may need
to see the entire sequence to decode it uniquely, but for instantaneous ones, you can decode a symbol as
soon as you’ve seen its encoding.

Figure 9.2: Codes.

9.2.1 Examples of Codes

• Encode a uniform distribution on 4 letters: We simply assign 2 bits per symbol. Hence, El(x) = 2 =
H(x).

• Uniform distribution on 7 letters: We assign 3 bits per letter. Hence El(x) = 3 ≤ H(x) + 1

• p(a) = 1
2 , p(b) = 1

4 , p(c) = 1
4 . We code a → 0, b → 10, c → 11. We have El(x) = 3

2 = H(x). We note
that is a prefix free code.

• Non-Singular Code: p(a) = 0.5, p(b) = 0.25, p(c) = p(d) = 1
8 , We code a → 0, b → 1, c → 00, d → 01.

This is nonsingular but not very useful or practical since it is not uniquely decodable since the string
′01′ can map to both ab or c . El(x) = 1.25 ≤ H(X) = 1.75

• We code a→ 10, b→ 00, c→ 11, d→ 110. This is nonsingular and uniquely decodable but not prefix
free since the code for c, ′11′ is a prefix for the code for d,′ 110′. This would result in decoding ”on the
fly” impossible.

• We code a → 0, b → 10, c → 110, d → 111. Hence this code is prefix-free, and therefore non-singular
and uniquely decodable.

It is clear that the bare minimum requirement when designing a practical code is that it needs to be uniquely
decodable.

Lecture 9: Sept 28 9-5

9.3 Shannon Source Coding Theorem (Achievability)

We now state and prove the Shannon source coding theorem:

Theorem 9.3 Let xn denote a sequence of n source symbols drawn iid from p(X). ∃ a code C that maps
sequences xn into binary strings such that the mapping is one-to-one and for any ε ≥ 0, ∃n0 such that
∀n ≥ n0 we have :

E[
l(xn)

n
] ≤ H(x) + ε

Proof: Suppose I could find a set A
(n)
δ ⊆ X (n) with |A(n)

δ | ≤ 2n(H(x)+δ) but also with P
[
A

(n)
δ

]
≥ 1− δ . We

shall revisit this construction.

We present a coding scheme: If x(n) ∈ A(n)
δ , then code by indexing into this set using 1 + dn(H + δ)e bits.

If x(n) /∈ A(n)
δ , we then code with 1 + dn log |X |e bits.

We now write out the expectation of the length of the codeword.

E
[
l(x(n)

]
=
∑
x(n)

p(x(n))l(x(n) ≤
∑

x(n)∈A(n)
δ

p(x(n))(2 + n(H + δ)) +
∑

x(n) /∈A(n)
δ

p(x(n))(2 + n log |X |)

≤ 2 + n(H + δ) + n log |X |(1− P(Anδ)

≤ 2 + n(H + δ) + nδ log |X | ≡ n(H + ε) where ε =
2

n
+ δ(1 + log |X |)

We now consider how to build A
(n)
δ , often called a typical set. Let:

A
(n)
δ = {(x1 · · ·xn)|H(x(n))− δ ≤ − 1

n
log p(x1 · · ·xn)} ≤ H(x) + δ}.

Clearly this is well defined.

Claim 9.4 If X1 · · ·Xn p , then

− 1

n
log p(x1, c . . . xn)→ H(X)

as n→∞

Proof: This essentially holds by the weak law of large numbers.

1

n
log p(x1 · · ·xn) = − 1

n

∑
i

log p(xi)→ Ex p − log p(x) = H(x)

The finite sample version holds by Hoeffding’s inequality. If p(x) ≥ pmin, then 0 ≤ − log p(x) ≤ log pmin , γ
and as a result :

9-6 Lecture 9: Sept 28

P
[1

n
|
∑
i

− log p(xi)−H(X)| ≥ ε
]
≤ 2e

−2nε2

γ2

or with probability 1− δ

| 1
n

∑
i

− log(p(xi))−H(x)| ≤
√
γ2

2n
log(

2

δ
)

Hence we simply set A
(n)
ε,δ with ε =

√
γ2

2n log(2
δ) and we have P

[
A

(n)
ε,δ

]
≥ 1− δ

Hence, we have proven the achievability part of the Source Coding Theorem. Recapping, we use the Law
of large numbers that most of the probability mass concentrates on a few sequences characterized by the
entropy. We use the code that assigns short sequences to these sequences in the typical set and long sequences
to the rest that are not in the typical set.

In the next class, we will talk about Necessity i.e. any uniquely decodable source code cannot compress
below entropy.

