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7.1 Overview

In the previous lecture we reviewed several entropy estimators for discrete variables and continuous variables.
We extended this to estimate mutual information, and then talked about applications to feature selection,
independence testing, machine learning on distributions and learning tree graphical models via the Chow-Liu
algorithm.

In this lecture, we first discuss a procedure for learning more general graphical models (the PC algorithm)
using conditional mutual information estimators. We then switch to an unrelated topic: maximum entropy
distributions and information information projection.

7.2 Application: Structure Learning in General Graphical Models

Last time we discussed the Chow-Liu algorithm, which uses mutual information estimation to learn the best
tree graphical model representing data. Recall that, in each iteration, the Chow-Liu algorithm greedily adds
an edge between the pair of unconnected variables exhibiting the greatest (estimated) mutual information.
Because we only add edges between unconnected variables (since there is a single path connecting two nodes
in a tree graph), (unconditional) mutual information suffices. However, to learn general graphical models
(allowing multiple paths between nodes), we need measure conditional dependence, for which we can estimate
conditional mutual information.

In general, there are exponentially many subsets of p variables on which we might have to condition to
learn a graphical model. However, by choosing our conditional independence tests in a certain order, we can
reduce the search time and the number of tests needed to be polynomial, if the underlying graphical model
is sparse (not too many edges, or limitation on the degree of nodes).

By doing so, the PC algorithm, 1 which uses a conditional independence test as a subroutine, gives an efficient
procedure for learning a general graphical model from joint observations of the variables. Intuitively, the
PC algorithm begins with a complete graph and repeatedly picks an edge at random, removing it if it can
find a set of conditioning variables that make the variables conditionally independent. For each edge, the
conditioning set size is gradually varied from 0 to maximum degree to leverage sparsity of edges for faster
runtime. See Figure 7.1 for pseudocode.

1Peter-Clark Algorithm, named for proposers Peter Spirtes and Clark Glymour [PC00]; see also [KB07] (available http:

//jmlr.csail.mit.edu/papers/volume8/kalisch07a/kalisch07a.pdf) for a more recent coverage and statistical analysis.
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Inputs: A set X = {X1, . . . , Xp} of p variables
A data set of n joint observations {(x1,i, . . . , xp,i)}ni=1

A test T for conditional independence (T (Xi, Xj ,Y) = TRUE iff Xi ⊥ Xj |Y)
Outputs: An undirected graph G = (X , E) with {Xi, Xj} ∈ E if and only if T (Xi, Xj ,Y) = FALSE

for every Y ⊆ X \ {Xi, Xj}

1) Initialize a complete graph G = (X , E)
2) Initialize ` = −1
3) while ` is less than the maximum degree of G
4) ` = `+ 1
5) for each edge {Xi, Xj} ∈ E with |NG(Xi)\{Xj}| ≥ `
6) for each subset of neighbors Y ⊆ NG(Xi)\{Xj} with |Y| = `
7) if T (Xi, Xj ,Y) == TRUE
8) delete edge {Xi, Xj} from E
9) break
10) endif
11) end for each
12) end for each
13)end while

Figure 7.1: Pseudocode of the PC algorithm. NG(Xi) denotes the set of neighbors of Xi in G.

Remark: Both the Chow-Liu algorithm for trees and PC algorithm for general graphical models can also
be used to recover directed acyclic graphs (DAGs). The undirected graph returned by both algorithms
corresponds to the skeleton (undirected graph obtained by ignoring directionality) of a DAG. Directionality
can only be obtained up to an equivalence class of DAGs, i.e. there exist post-processing steps which can
generate one DAG out of the equivalence class of DAGs all of which can imply the same set of conditional
independence relations (for details, see [PC00,KB07]).

7.3 Maximum Entropy Density Estimation

Motivation: We often consider the uniform or Gaussian distributions to be good priors because they seem
intuitively to be non-informative. This notion can be formalized in sense that, uniform and Gaussian are
maximum entropy distributions: of all distributions satisfying certain constraints, they have the greatest
entropy. The uniform distribution arises when we constrain the support of the distribution. The Gaussian
appears when we constrain the first two moments (mean and variance). In general, we will show that the
exponential family of distributions arises as solutions to the following optimization problem:

max
p∈P(X )

H(p) (7.1)

subject to EX∼p[fi(X)] = αi, i ∈ {1, . . . , n}
and EX∼p[gj(X)] ≤ βj , j ∈ {1, . . . ,m},

where P(X ) is the set of probability densities on a sample space X , 2 each fi, gj : R→ R, and each αi, βj ∈ R.
This problem is natural in the following sense: if we are given prior knowledge or estimates of some properties
of a distribution, then subject to these constraints, the distribution is expected to be the maximum entropy
distribution with those properties. Theorem 7.1 parameterizes the solutions to this problem:

2The particular base measure µ on X is not important for the theory, though, in applications, this must of course be specified,
as shown in the examples.
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Theorem 7.1 The density p∗ ∈ P(X ) solving the optimization problem 7.1 is in the exponential family

E(X ) :=

p : X → R+ : p(x) = exp

−1− λ0 −
n∑
i=1

λifi(x)−
m∑
j=1

λn+jgj(x)

 , ∀x ∈ R

 ,

for some ~λ ∈ R1+n+m, with λn+1, . . . , λn+m ≥ 0, which ensure that p∗ satisfied the constraints. Furthermore,
any p∗ ∈ E(X ) is a maximum entropy distribution (optimizes 7.1), for some set of linear constraints.

Proof: Step 1. We first show, somewhat informally, that any maximum entropy distribution is in E(X ). 3

If we rewrite the objective as minimizing −H(p), then the Lagrangian L : P(X )× [0,∞)1+n+m → R is

L(p,~λ) = −H(p) + λ0(

∫
X
p(x) dx− 1) +

n∑
i=1

λi(

∫
X
p(x)fi(x) dx− αi) +

m∑
j=1

λn+j(

∫
X
p(x)gj(x) dx− βj)

The λ0 term comes from the implicit constraint
∫
X p(x) dx = 1, since p is a probability density. The lagrange

parameters for the inequality constraints λn+1, . . . , λn+m ≥ 0.

Setting the derivative of the integrand with respect to p(x) equal to 0 gives, for the optimum p∗ ∈ P(X ) and
~λ ∈ R1+n+m, (this is valid as long as p, f and g are continuous)

0 = 1 + log p∗(x) + λ0 +

n∑
i=1

λifi(x) +

j∑
j=1

λn+jgj(x).

Solving for p∗(x) gives

p∗(x) = exp

−1− λ0 −
n∑
i=1

λifi(x)−
j∑
j=1

λn+jgj(x).

 ,

which is the form of an exponential family distribution.

Step 2. We now show any p∗ ∈ E(X ) is a maximum entropy distribution under appropriate constraints,
given by the following. Let

αi :=

∫
X
p∗(x)fi(x) βj :=

∫
X
p∗(x)gj(x)

For any p ∈ P(X ) that satisfies the constraints
∫
X p(x)fi(x) = αi and

∫
X p
∗(x)gj(x) = βj , we apply Gibbs

3Since H(p) is concave in p and the constraints are linear in p, this calculation can be made into a formal proof of optimality
using methods from the calculus of variations, at least for continuous distributions.
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Inequality,

H(p) = −
∫
X
p(x) log

(
p(x)

p∗(x)
p∗(x)

)
dx = −D(p||p∗)−

∫
X
p(x) log p∗(x) dx ≤ −

∫
X
p(x) log p∗(x) dx (7.2)

=

∫
X
p(x)

1 + λ0 +

n∑
i=1

λifi(x) +

m∑
j=1

λn+jgj(x)

 dx (7.3)

≤
∫
X
p(x)

1 + λ0 +

n∑
i=1

λiαi +

m∑
j=1

λn+jβj

 dx (7.4)

= 1 + λ0 +

n∑
i=1

λiαi +

m∑
j=1

λn+jβj (7.5)

=

∫
X
p∗(x)

1 + λ0 +

n∑
i=1

λifi(x) +

m∑
j=1

λn+jgj(x)

 dx (7.6)

=

∫
X
p∗(x) log p∗(x) dx = H(p∗), (7.7)

where (7.4) follows since p(x) satisfies the constraints and (7.7) follows from the definition of αi, βj .

We now give a few examples of maximum entropy distributions under certain constraints.

Example 1 (Uniform): Suppose we constrain the domain EX∼p[1A(X)] = 1 for some A ⊆ X with
0 < µ(A) <∞ for some base measure µ. Since the constraint is discontinuous, we look for the unconstrained
solution and then impose the constraint. For some λ0 ∈ R,

p∗(x) = exp (−1− λ0)

for x ∈ A and 0 outside. This is clearly uniform over A, and solving for λ0 from the constraint
∫
A
p∗(x) dx = 1

gives p∗(x) = 1A(x)
µ(A) , ∀x ∈ X .

Example 2 (Exponential): Suppose X = R and we constrain the domain EX∼p[1[0,∞)(X)] = 1 and the
mean EX∼p[X] = µ. The second constraint is continuous, so using it we get: for some λ0, λ1 ∈ R,

p∗(x) = exp (−1− λ0 − λ1x) ,

for x ∈ [0,∞) and 0 outside, which is an exponential distribution. Solving for λ0, λ1 from the constraints∫∞
0
p∗(x) dx = 1 and

∫∞
0
xp∗(x) dx = µ gives p∗(x) = 1

µe
−x/µ1[0,∞).

Example 3 (Gaussian): Suppose X = R and we constrain the mean EX∼p[X] = µ and the variance
EX∼p[(X − µ)2] = σ2. Then, for some λ0, λ1, λ2 ∈ R,

p∗(x) = exp
(
−1− λ0 − λ1x− λ2(x− µ)2

)
.

Since EX∼p∗ [X] = µ, λ1 = 0. p∗ then has the form of a Gaussian, and using the constraints
∫
p∗(x) dx = 1

and
∫

(x−µ)2p∗(x) dx = σ2 it follows that p∗(x) = 1√
2πσ2

exp
(
− (x−µ)2

2

)
(solving for λ0 directly here involves

some difficult integration).
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7.4 Information Projection

An important problem in information geometry is information projection, a generalization of the maximum
entropy problem discussed above. The maximum entropy problem can be viewed as

p∗ := arg max
p∈Q

H(p) = arg min
p∈Q
−H(p) = arg min

p∈Q
EX∼p[log p(X)] = arg min

p∈Q
D(p||u),

where Q ⊆ P(X ) is a constraint set and u is the uniform distribution on X ; i.e., p∗ is the constrained
distribution closest to the uniform in KL-divergence. For a general distribution p0, we can find the constrained
distribution closest to p0; i.e., p∗ := arg minp∈QD(p||p0). The distribution p0 can be thought of as our prior
belief in what p∗ should be, before placing the constraints (e.g. the constraints might come from data).
Under mild assumptions, the solution is the Gibbs distribution (a natural generalization of the exponential
family)

p∗(x) = p0(x) exp

(
−1− λ0 −

n∑
i=1

λifi(x)

)
=
p0(x)e−

∑n
i=1 λifi(x)

Zλ
,

where Zλ is a normalization constant. Next lecture, we will study this via information geometric tools.
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