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6.1 Summary of Plug-in Entropy Estimators

There are three different ways to obtain a plug-in estimator using a density estimate p̂(x):

1. Integral Estimate: Ĥ(x) = −
∫
p̂(x) log p̂(x)dx

2. Re-substitution Estimate: Ĥ(x) = − 1
n

∑n
i=1 log p̂(Xi) where p̂ is obtained using the samples

{X1, ..., Xn}.

3. Splitting Data Estimate: Ĥ(x) = − 1
m

∑m
i=1 log p̂(Xi) where p̂ is obtained using the samples

{Xm+1, ..., Xn}. A cross-validation estimate can be defined similarly, e.g. the leave-one-out estimate
is given as Ĥ(x) = − 1

n

∑n
i=1 log p̂i(Xi) where p̂i is obtained using all samples except Xi.

Unlike the integral estimate, the re-substitution and splitting data estimators are easy to compute.

The key difference between the Re-substitution estimate and the Splitting Data Estimate is that the splitting
estimate sums over different samples than the ones used for estimating the density p̂.

We will analyze the Splitting data estimator using Von-Mises analysis next.

6.1.1 Splitting data Estimator Analysis via Von-Mises expansion

Consider the following estimator. Split the data into half, use the first half to construct a density estimate
p̂h and then replace the integral (which is just an expectation) with a sample mean:

Ĥ(p) =
2

n

n∑
i=n/2+1

− log(p̂h(Xi))

The analysis approach again uses the taylor expansion but is based on the observation that the linear,
quadratic, and cubic terms involve simple functionals of the unknown density p (See Krishnamurthy et al.
(2014) and references therein for details). There are some technical details here (you have to define derivatives
on functions appropriately) but, for densities that are bounded from below, you can write:

H(p) = H(q) +

∫
(log(q(x) + 1)(q(x)− p(x))dx+O(‖q − p‖22)

= −
∫
p(x) log(q(x)) +O(‖q − p‖22)
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This is just a functional taylor expansion, but it known as the Von Mises Expansion (since the functionals
are defined over the space of distributions). The expansion immediately gives:

Ĥ(p)−H(p) =
2

n

n∑
i=n/2+1

− log(p̂h(Xi)) +

∫
p(x) log p̂h(x)dx+O(‖p− p̂h‖22)

The first two terms are just the difference between a sample average and its mean, so it will have absolute error

of order O(1/
√
n). The second term is just the MSE of the density estimator, which we know is O(n

−2β
2β+d ) for

the kernel density estimator with optimal bandwidth choice O(n
−1

2β+d ). If the density smoothness β > d/2,

this first-order corrected estimator has a n−1/2 parametric rate. Notice that we set the bandwidth h � n
−1

2β+d

which is the optimal bandwidth for density estimation. This contrasts with the plugin method.

It turns out that the minimax rate for these sorts of problems is typically n−min{1/2, 4β
4β+d}. This means that

the critical smoothness is d/4; if β > d/4 you can achieve the parametric convergence rate. The estimators
that achieve this require higher order corrections. If you make a second order expansion with a third order
remainder, you achieve the critical smoothness index, but are suboptimal in the β < d/4 regime. To be
minimax optimal everywhere you have to make a third order expansion with fourth order remainder.

Some other comments:

1. This framework is particularly appealing since you can use whatever density estimator you like. You
can use kNN-based, histogram, KDE etc. We have focused on analyzing the kernel density estima-
tor, however a similar analysis follows for other estimators by plugging-in their mean square density
estimation error. Specifically, the kNN-based density estimator is given as follows:

p̂k(x) =
k

nvolkNN (x)
∝ k

n(distkNN (x))d

where volkNN and distkNN are the volume of the smallest ball that contains the kth nearest neighbor
of x and the distance to it, respectively. Since k/n is an estimate of the probability mass in that ball,
dividing by its volume gives the density estimate. The corresponding entropy estimator is Kozachenko
et al. (1987)

Ĥk =
d

n/2

n∑
i=n/2+1

log distkNN (x) + ck,n

The constant depends on n, k and the volume of the unit ball in d-dimensions. This estimator is
consistent for all k (even fixed k, not increasing with n while the optimal choice of k for density
estimation needs to scale with n) under some appropriate assumptions on density - boundedness,
continuous on support and well-behaved boundary of support. Hence, often the mean-NN entropy
estimator

Ĥ =
1

n− 1

n−1∑
k=1

Ĥk =
d

n(n− 1)

∑
i 6=j

log ‖xi − xj‖+ const

is used e.g. in the clustering paper Faivishevsky et al. (2010) we discussed earlier.

2. This is also great because you can tune the hyperparameter (in this case the bandwidth) by cross-
validating the density estimator.

3. You can also show other properties for these first-order estimators in some special cases. For example,
provided the first order term at the true distribution is not identically zero (for entropy this means p
is uniform) you can show asymptotic normality. In this case you can also build confidence intervals by
using a plugin estimator for the asymptotic variance Krishnamurthy et al. (2014).
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6.2 Estimating Mutual Information

Estimating quantities such as mutual information can be reduced to the problem of estimating entropy or
density by expressing mutual information in terms of these quantities:

Î(X,Y ) = Ĥ(X) + Ĥ(Y )− Ĥ(X,Y )

Î(X,Y ) = D(p̂(x, y)||p̂(x)p̂(y)) =

∫
p̂(x, y) log

p̂(x, y)

p̂(x)p̂(y)
dxdy

Developing such estimates in high dimensions and analyzing their properties is an open research direction.

6.3 More applications to Machine Learning

6.3.1 Feature selection

Mutual information can be used for feature selection in prediction problems (classification, regression, etc.)
with high-dimensional inputs. For example, ideally one would like to select k features out of d that have
maximum mutual information with the output Y :

arg max
Ω⊂[1,...,d];|Ω|=k

I(XΩ, Y )

However, this objective (also known as information gain) is combinatorial requiring search over all possible
subset of k out of d and is also not sub-modular, as you saw in QNA1 assignment. Nevertheless, in practice
(such as in decision tree algorithms like ID3), often a greedy solution is employed that either selects the k
variables with largest information gain I(Xi, Y ), aka mutual information score for each variable. However,
this can pick redundant features and often better solutions can be obtained by selecting the variable with
largest information gain, then condition on it, and select the next variable with largest information gain
conditioned on the ones that are already selected, and so on. In applications, mutual information estimated
from finite samples under parametric or non-parametric assumptions is used, as we discussed in previously.

6.3.2 Independence testing

Since I(X,Y ) = 0 if X is independent of Y , estimators of mutual information can be used as test statistics
for independence testing. To control the false-alarm or size of such tests i.e. PX⊥Y (Î(X,Y ) > threshold),
we need to know or estimate the distribution of the test statistic under the null i.e. X ⊥ Y (similarly, to
control detection probability or power, we need to know or estimate the distribution of the test statistic
under the alternate i.e. X not dependent on Y ). The analysis we show argues that Î(X,Y ) converges to
I(X,Y ) in mean, but as we discussed in von-Mises analysis, for some estimators we can also characterize the
distribution of Î(X,Y )−I(X,Y ) (e.g. it is asymptotically gaussian), which enables bounding the false-alarm
or size etc.

Similarly, conditional mutual information estimates can be used for conditional independence testing.

6.3.3 Machine learning on distributions

There has been a recent line of work referred to as “Machine Learning on Distributions.” Here we treat the
data points as distributions, and the goal is to do clustering, classification, or regression where the data
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points are distributions, and we only access them through their samples. For example, each image can
be represented by a collection of image patches which are samples from the distribution characterizing the
image. See http://videolectures.net/nipsworkshops2012 poczos learning/ for more examples.

Many ML algorithms can be written just with distances or similarities (via the kernel trick) and so we
can use a divergence to specify a distance or a similarity. Two examples are kernel-SVM and spectral
clustering, where we just need a measure of similarity between each example (which is a distribution).
We can plug an estimate of relative entropy (KL-divergence, L2-divergence, or any other distance between
distributions/densities), into the kernel to define a measure of similarity. Then we can simply run these
algorithms.

One caveat is that we may not be preserving symmetry and positive semidefiniteness of the Gram matrix.
One workaround is to symmetrize the relative entropy e.g. as (D(p||q) + D(q||p)/2 and simply project the
similarity matrix we have onto the PSD (positive semi-definite) cone - by taking eigendecomposition of the
similarity matrix and setting negative eigenvalues to zero.

6.3.4 Estimating Structure of Graphical Models

The joint distribution of a collection of random variables can be expressed using chain rule as:

p(X1, ..., Xp) =

p∏
i=1

p(Xi|Xi−1...X1)

.

In machine learning, graphical models are used as a graphical representation of conditional dependencies
between random variables. When the distribution of random variables admits a more restricted form which
can be characterized by a graphical structure. For directed graphical models, we define pa(Xi) to be the set
of parents of Xi and the joint probability can be expressed as:

p(X1, ..., Xp) =

p∏
i=1

p(Xi|pa(Xi))

Graphical models capture the relationship of conditional independence among variables. For a variable
Xi, Xi ⊥ non− descendants|pa(Xi). Other conditional independence relations represented by the graphical
model can be read off using d-separation. Tests for the conditional independence of random variables becomes
essential to the estimation of graphical models. A test for conditional independence can be based on mutual
information since the latter is zero for independent variables. There may be more than one graphical model
that represents the same set of conditional independence relations. These are referred to as belonging to
the same “equivalence class”. We focus on the problem of learning the (undirected) structure of a graphical
model. The structure can then be directed to recover one of the graphical models from an equivalence class
of graphical models.

We may observe the p random variables n times [X
(i)
1 , ..., X

(i)
p ]ni=1 and want to estimate the structure of the

underlying graphical model. Without making any simplifying assumptions this problem is NP-Hard as we
need to test independence relations between all possible pairs of subsets of nodes conditioned on another
subset of nodes. However, the problem is feasible for specific graphs such as trees.

Tree Assumption: each node has only one parent, that is ∀Xi, |pa(Xi)| = 1.

Under the tree assumption, the factorization of the joint distribution can be written as:

http://videolectures.net/nipsworkshops2012_poczos_learning/
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p(X1, ..., Xp) =

p∏
i=1

p(Xi, pa(Xi))

p(pa(Xi))
=

p∏
i=1

p(Xi)
∏

(i,j)εE

p(Xi, Xj)

p(Xi)p(Xj)

where E be the set of edges belonging to the graph. This follows since each node appears as many times
in the second product term as its degree, but is a parent only degree-1 times (hence the need for the first
product term).

One way to learn the structure of the graphical model is to maximize the likelihood of the data (or equivalently
minimize the negative log likelihood) over the edge set.

max
E

n∏
i=1

p
(
X

(i)
1 , ..., X(i)

p

)
≡ min

E

n∑
i=1

[
log

1

p(X
(i)
1 , ..., X

(i)
p )

]

Lets look at the edge set which minimizes expected negative log likelihood. Using the factorized form of the
distribution, the problem is equivalent to:

min
E

E

 p∑
i=1

log

(
1

p(Xi)

)
−
∑
i,jεE

log

(
p(Xi, Xj)

p(Xi)p(Xj)

)

= min
E

n∑
i=1

H(Xi)−
∑

(i,j)εE

I(Xi, Xj)

This is equivalent to finding edge set that maximizes mutual information of pairs maxE
∑

(i,j)εE I(Xi, Xj)
which is the maximum weight spanning tree problem where the weights correspond to pairwise mutual
information, and we are seeking a tree that spans all the vertices but has maximum sum of edge weights.
The maximum weight spanning tree can be found very efficiently using Chow-Liu Algorithm (also known as
Kruskal’s algorithm). The algorithm consists of picking pairs with max mutual information greedily (largest
to smallest) and joining them, provided no loop is formed.

If the true distribution does not correspond to a tree graphical model, it can be shown that this method
(run with mutual information computed using bi-variate and uni-variate marginals of the distrribution) still
finds the best tree approximation to any distribution.

Since the true mutual information is unknown, an estimate (discussed above) will need to be used. Further
reading on how the error in mutual information estimation propagates into error in learning the structure of
the tree, and sample complexity guarantees for estimating trees can be found at Chow et al. (1968), Liu
et al. (2011).

In next class, we will talk about an algorithm for learning the structure of general (non-tree) graphical
models.
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