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5.1 Estimation of information theoretic quantities

Information theory often assumes the source distribution or probability models are known (as they can often
be designed in classical signal processing applications), however in modern signal processing and machine
learning applications, these need to be estimated from data i.e. samples from the probability models. We
saw an example of this in the clustering application where we estimated the conditional entropy by plugging-
in estimates of the mean and variance. Here we revisit that idea and few other estimators. We start by
discussing some estimations of entropy in discrete and continuous settings.

5.2 Discrete Setting

We have a distribution P supported on a finite alphabet {1, . . . , d} with P (X = j) = pj (
∑d
j=1 pj = 1). We

observe independent samples {X}ni=1 ∼ P and would like to estimate some functional of P , say the entropy:

H(P ) = −
d∑
j=1

pj log2(pj) (5.1)

5.2.1 Plugin Estimator

The classical estimator here is the plugin estimator. We use the sample to estimate the frequencies, p̂j =
1
n

∑n
i=1 1[Xi = j] and simply plug in these frequencies to obtain:

Ĥn = −
d∑
j=1

p̂j log2(p̂j) (5.2)

Let us characterize the error rate of this estimator. Some of the relevant papers here are Basharin (1959);
Antos et al. (2001).

Theorem 1.

E
(
Ĥn −H

)2
= O

(
σ2

n
+
d2

n2

)
(5.3)

where σ2 = Var(− log2 p(X)). In particular the plugin estimator achieves the parametric rate of O(1/n) for
low-dimensional (fixed d) settings.

5-1



5-2 Lecture 5: Sept 14

Proof. For the whole proof, we’ll actually work with the entropy defined using the natural log. At the end,
multiply everything through by log2(e) to change the base back to base two.

To bound the mean-squared error of the plug-in entropy estimator, we use the bias-variance decomposition.

E
(
Ĥn −H

)2
= E[(Ĥn − EĤn)2] +

[
EĤn −H

]2
+ 2E[(Ĥn − EĤn)(EĤn −H)]

= E[(Ĥn − EĤn)2] +
[
EĤn −H

]2
The first term is the variance of the estimator and characterizes the squared deviation of the estimator
around its mean, the second term is square of the bias which characterizes how well the mean of the estimator
approximates the true entropy. The third term vanishes since EĤn and H are not random quantities, and
hence moving the outer expectation inside yields EĤn − EĤn = 0.

We will show that:

|EĤn −H| = O(
d

n
) Var(Ĥn) = O(

σ2

n
+
d2

n2
)

The result then follows by plugging these bounds into the bias-variance decomposition shown above. Both
of these bounds will be obtained by Taylor expanding Ĥn = H(p̂) around H(p) and using standard facts
about how p̂j converges to pj . Notice that np̂j is Binomial(n, pj). We will use the following facts about the
moments of binomial random variables (these are fairly easy to prove):

Ep̂j − pj = 0

E (p̂j − pj)2 =
pj(1− pj)

n

E (p̂j − pj) (p̂k − pk) =
−pjpk
n

j 6= k

E (p̂j − pj)3 =
pj − 3p2j + 3p3j

n2

The fourth moment is also Θ(1/n2). Recall that, for a function f , Taylor’s expansion of degree m with
remainder is given as: There exists a c between a and x such that

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ fk(a)

k!
(x− a)k +

fk+1(c)

(k + 1)!
(x− a)k+1

Using this, we have

Ĥn = H(p̂) = H(p)−
d∑
j=1

(p̂j − pj)(1 + log pj)−
1

2

d∑
j=1

(p̂j − pj)2

pj
+

1

6

d∑
j=1

(p̂j − pj)3

p2j

− 1

12

d∑
j=1

(p̂j − pj)4

((1− θ)pj + θp̂j)3

where θ ∈ [0, 1]. For the bias, the first order term is annihilated. The second and third order terms are:

1

2

d∑
j=1

E
(p̂j − pj)2

pj
=

1

2

d∑
j=1

(1− pj)
n

=
d− 1

2n

1

6

d∑
j=1

E
(p̂j − pj)3

p2j
=

1

6n2

d∑
j=1

3pj − 3 +
1

pj
= O(

d

n2
)
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By the fact that 1
((1−θ)pj+θp̂j)3 ≤

1
(1−θ)3p3j

, the remainder term is also O(d/n2).

The variance analysis (or direct analysis of Mean Square Error using Taylor expansion) is quite tedious but
it follows along similar lines. We present a rough argument below. Write:

E
[
(Ĥn − EĤn)2

]
= E

[
(Ĥn −H +

d− 1

2n
+O(d/n2))2

]
and then take a third order taylor expansion of Ĥn around H to get:

E


− d∑

j=1

(p̂j − pj)(1 + log pj) +
d− 1

2n
− 1

2

d∑
j=1

(p̂j − pj)2

pj
+

1

6

d∑
j=1

(p̂j − pj)3

(pj(1− θ) + θp̂j)2
+O(d/n2)

2


When you square, the key thing to note is that the term that matters is the first one (all other terms can
be shown to be O(d2/n2)):

E


− d∑

j=1

(p̂j − pj)(1 + log pj)

2
 =

d∑
j,k=1

(1 + log pj)(1 + log pk)E(p̂j − pj)(p̂k − pk)

=
1

n

d∑
j=1

(1 + log pj)
2pj(1− pj)−

1

n

∑
j 6=k

(1 + log pj)(1 + log pj)pjpk

=
1

n

d∑
j=1

pj log2 pj −H2 =
1

n
σ2

All of the other terms are O(d2/n2), and hence the variance and MSE bounds follow.

5.3 Continuous Setting

Here, we assume the distribution P is continuous with density p = dP/dµ, where µ is the Lebesgue measure.
As before we obtain a sample {Xi}ni=1 ∼ P . We would like to estimate the differential entropy:

H(p) = −
∫
p(x) log p(x)dµ(x)

We discuss a few approaches.

5.3.1 Plugin Estimator

The plugin estimator is conceptually straightforward: estimate the density p̂ using a parametric estimator
such as a Gaussian with estimated means and variances, as discussed in last class, or a non-parametric
estimator such as a kernel density estimator (KDE), nearest-neighbor estimator, or histogram 1 and plug
this into the functional. Specifically with an estimator p̂ we get:

Ĥ = −
∫
p̂(x) log p̂(x)dµ(x)

1if you are unfamiliar with these estimators, see e.g. http://www.cs.cmu.edu/ aarti/Class/10701 Spring14/slides/nonparametric.pdf

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/nonparametric.pdf
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We investigate rates of error convergence for the KDE based entropy estimator Liu et al. (2012). Recall
that the density estimator p̂h using a kernel K and bandwidth h is given by (e.g. K(x) ∝ exp(−x2), i.e. the
Gaussian kernel.):

p̂h(x) =
1

nhd

n∑
i=1

K

(
‖x−Xi‖

h

)

The main assumption we will use is a smoothness assumption on the density, since an arbitrary non-
smooth density cannot be estimated well from finite samples.

Definition 2. The class of functions Σ(β, L) is called the Holder class. A function f : [0, 1]d → R is in
Σ(β, L) if for all tuples (r1, . . . , rd) where ri is a non-negative integer with

∑
i ri ≤ bβc (the largest integer

strictly smaller than β) we have:

|Drf(x+ u)−Drf(x)| ≤ L‖u‖β−|r|

where |r| =
∑
j rj and Dr is the rth derivative of f .

For example the class Σ(2, L) is the class of functions with Lipschitz continuous derivatives. In this case,
the assumption essentially says that small changes in the input only cause small changes in the function.

It is a classical result that if p has smoothness β (i.e. belongs to Holder, or Sobolev classes) then:

Ep̂h(x)− p(x) � hβ Var(p̂h(x)) � 1

nhd

And the mean squared error is equal to the squared bias plus the variance. The MSE is minimized when

the squared bias and variance are balanced, i.e. we choose h � n
−1

2β+d in which case the squared bias and

variance, and hence the MSE, are all O(n
−2β
2β+d ).

We decompose the error of the entropy estimate as

|H(p̂h)−H(p)| ≤ |H(p̂h)− EH(p̂h)|︸ ︷︷ ︸
Variance

+ |EH(p̂h)−H(p)|︸ ︷︷ ︸
bias

Liu, Lafferty, and Wasserman Liu et al. (2012) show (and you will do it in Homework) that functional:

P(|H(p̂h)− EH(p̂h)| > ε) ≤ 2 exp

(
nε2

32κ2

)
|EH(p̂h)−H(p)| ≤ c1hβ +

c3
nhd

where κ, c1, c3 are constants. The bias term is optimized by setting h � n
−1
β+d , so that the bias is O(n

−β
β+d ).

The concentration bound on the variance shows that variance-like term is O(1/
√
n) and putting these

together gives the rate:

E[|H(p̂h)−H(p)|] ≤ OP
(

1√
n

+ n
−β
β+d

)
Notice that when β > d, the second term is asymptotically dominated by the first, leading to a parametric
O(1/

√
n) convergence rate in this smooth regime.

The main point here is that we chose the bandwidth h � n
−1
β+d which is suboptimal for density estimation

and infact undersmooths the density estimate (leading to higher variance than bias for density estimation).
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However, integration in the entropy functional removes some of this variance, making a smaller bandwidth
suitable for entropy estimation.

Some comments:

1. You can also use other forms of plugin estimators. For example, Singh and Poczos Singh et al. (2016)
use and analyze k-NN based estimators. Interestingly, they show that you can consistently estimate
these divergences by keeping k fixed with n. This is essentially undersmoothing, when k is fixed, you
have lower bias than usual but higher variance. The k-NN estimator is:

p̂k(x) =
1

n

k

vol(Bk(x))

where Bk is the Euclidean ball centered at x that contains k samples nearest to x.

2. One downside is that tuning the hyperparameter is tough here. It is not clear what loss to use for
doing something like cross-validation. The problem is that the hyperparameter is not the same one
you would use for density estimation.

3. Another downside is that the existing analyses are highly specialized. The proofs for the kNN method
are quite different from the techniques outlined here. This contrasts with Von-Mises analysis we will
discuss next time, where we get to borrow a lot from existing density estimation results.

4. Yet another downside is computing the integral which requires numerical integration, we discuss alter-
natives below.

There are few other plug-in estimators that can be used. There are three different ways to obtain a plug-in
estimator using a density estimate p̂(x):

1. Integral Estimate: Ĥ(x) = −
∫
p̂(x) log p̂(x)dx (we discussed this above)

2. Re-substitution Estimate: Ĥ(x) = − 1
n

∑n
i=1 log p̂(Xi) where p̂ is obtained using the samples

{X1, ..., Xn}.

3. Splitting Data Estimate: Ĥ(x) = − 1
m

∑m
i=1 log p̂(Xi) where p̂ is obtained using the samples

{Xm+1, ..., Xn}. A cross-validation estimate can be defined similarly, e.g. the leave-one-out estimate
is given as Ĥ(x) = − 1

n

∑n
i=1 log p̂i(Xi) where p̂i is obtained using all samples except Xi.

The key difference between the Re-substitution estimate and the Splitting Data Estimate is that the splitting
estimate sums over different samples than the ones used for estimating the density p̂.

We will analyze the resubstitution estimator next time using Von-Mises analysis.
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