
10-704: Information Processing and Learning Fall 2016

Lecture 4: Sept 12
Lecturer: Aarti Singh

Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy
of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

4.1 Maximizing submodular functions

Algorithm 1 Greedy-Algorithm(Ω, f , k)
Input: A set Ω, A set function f : 2Ω → R, Size of subset k.
Output: A subset Ak ⊂ Ω of size k.
A0 ← ∅
For i = 1, . . . , k

1. for x ∈ Ω\Ai−1, set δx ← f(Ai−1 ∪ {x})− f(Ai−1)

2. x∗ ← argmaxx∈Ω\Ai−1
δx

3. Ai ← Ai−1 ∪ {x∗}

Theorem 1 (Nemhauser et al. (1978)). Let f be a function such that:

1. f is submodular over finite set Ω

2. f is monotone, i.e. ∀X ⊆ Y ⊆ Ω, we have f(Y) ≥ f(X)

3. f(∅) = 0

Let Ak ⊆ Ω be the first k elements chosen by Greedy-Algorithm(Ω, f , k) (see Algorithm 1). Then

f(Ak) ≥
(

1− 1

e

)
f(Aopt)

where Aopt = argmax
A⊆Ω, card(A)=k

f(A).

Proof. We prove the theorem by induction. Define Ai = {a1, ..., ai}, with A0 ≡ ∅. We claim that ∀0 ≤ j ≤ k

f(Aopt)− f(Aj) ≤
(

1− 1

k

)j
f(Aopt) (4.1)

1. At step j = 0 we have f(Aopt)− f(A0)︸ ︷︷ ︸
=f(∅)=0

≤ f(Aopt)

4-1

4-2 Lecture 4: Sept 12

2. Suppose (4.1) is true at step j = i− 1. Let δi = f(Ai)− f(Ai−1). Thus

f(Aopt)− f(Ai) = f(Aopt)− f(Ai−1)− δi (4.2)

Let Aopt \Ai−1 = {x1, ..., xm},m ≤ k. We have

f(Aopt)− f(Ai−1) ≤ f(Aopt ∪Ai−1)− f(Ai−1) [monotonicity]

= f(Ai−1 ∪ (Aopt \Ai−1))− f(Ai−1)

=

m∑
j=1

[f(Ai−1 ∪ {x1, ..., xj})− f(Ai−1 ∪ {x1, ..., xj−1})]

[submodularity] ≤
m∑
j=1

[f(Ai−1 ∪ xj)− f(Ai−1)]

[choice of Ai] ≤
m∑
j=1

[f(Ai)− f(Ai−1)] = mδi ≤ kδi

⇒ δi ≥ 1
k (f(Aopt)− f(Ai−1)). Hence, equation (4.2) can be completed as follows

f(Aopt)− f(Ai) = f(Aopt)− f(Ai−1)− δi

≤
(

1− 1

k

)
(f(Aopt)− f(Ai−1))

≤
(

1− 1

k

)i
f(Aopt)

Therefore (4.1) holds also at step i.

3. Finally notice that
(
1− 1

k

)k ≤ lim
k→∞

= 1
e , which completes the proof.

The following theorem works under the more general assumption of “approximate monotonicity” for sets
with small cardinality.

Theorem 2 (Krause et al. (2008)). If condition 2 of Theorem 1 is replaced by

2∗. ∀X ⊆ Ω s.t. |X| ≤ 2k, and ∀z ∈ Ω \X

f(X) ≤ f(X ∪ {z}) + ε (approximate monotonicity) (4.3)

then f(Ak) ≥
(
1− 1

e

)
(f(Aopt)− kε).

Clearly notice that if ε = 0, then f is monotone. For proof of the theorem see Krause et al. (2008).

Let’s check if the assumptions of Theorem 1 are satisfied by entropy H(X) and mutual information I(X,Ω \
X). We have

1. submodularity: H(X) and I(X,Ω \X) are submodular

2. monotonicity: H(X) ≤ H(Y), but I(X,Ω \X) 6≤ I(Y,Ω \ Y)

Lecture 4: Sept 12 4-3

3. H(∅) = I(∅,Ω \ ∅) = 0

Thus for the mutual information I(X,Ω\X) Theorem 1 cannot be directly applied. However Theorem 2 can
be used under some cases, e.g. if X correspond to a discretization of a Gaussian process with fine enough
grid (depending on k and ε) - see Lemma 5 and Corollary 6 in Krause et al. (2008).

I(X,Ω \X) ≤ I(X ∪ {z},Ω \ (X ∪ {z})) + ε. (4.4)

4.2 Differential Entropy

Definition 3 (Differential Entropy). Let X be a continuous random variable with pdf f . Then the differential
entropy of X is defined as

H(X) = −
∫
f(x) ln f(x)dx = E

[
ln

1

f(X)

]

The differential entropy is based on the natural logarithm ln = loge, instead of log2 as for entropy. All of
the properties of discrete entropy hold for differential entropy, except the following:

1. The differential entropy can be negative!

Example 1. X ∼ Uniform[0, a). Then H(X) = −
∫ a

0
1
a ln 1

adx = ln a such that H(X) < 0,∀a ∈ (0, 1).

Example 2. X ∼ N(0, σ2). Then the pdf is f(x) = 1√
2πσ

e−
x2

2σ2 and

H(X) = −
∫
R
f(x) ln f(x)dx

= −
∫
R

1√
2πσ

e−
x2

2σ2 ln

(
1√
2πσ

e−
x2

2σ2

)
dx

=

∫
R

1√
2πσ

e−
x2

2σ2

(
x2

2σ2
+ ln(

√
2πσ)

)
dx

=
1

2
+ ln(

√
2πσ)

=
1

2
ln(2πeσ2)

such that H(X) < 0 for σ <
√

1
2πe .

Example 3. X ∼ N(µd×1,Σd×d). Then H(X) = 1
2 ln((2πe)d|Σ|).

4.2.1 Application to Machine Learning: Clustering

Let X = {X1, ..., Xn} be a set of random variables Xi ∈ Rd. Let C : X → {1, ..., k} define a cluster
assignment which put each Xi into one of k classes. Denote with Ci the class assigned to Xi. An entropy-
based clustering [Faivishevsky et al. (2010)] is performed by solving:

arg max
C

I(X,C) = arg min
C

H(X|C) (4.5)

4-4 Lecture 4: Sept 12

Connection to k-means clustering

We might wonder if criterion (4.5) differs from k-means clustering. Suppose P (X|C = j) = N(µj , σ
2
j I),

where I is the d× d identity matrix. Thus, the differential entropy of X|C = j is

H(X|C = j) =
d

2
ln(2πeσ2

j) (4.6)

An estimator of H(X|C = j) (when µj , σj are unknown) is the plug-in estimator

Ĥ(X|C = j) =
d

2
ln

2πe
1

nj

∑
i:Ci=j

‖Xi − µ̂j‖22

 (4.7)

obtained by replacing σ2
j with σ̂2

j = 1
nj

∑
i:Ci=j

‖Xi−µ̂j‖2, where µ̂j = 1
nj

∑
i:Ci=j

Xi and nj = card({i : Ci = j}).

Thus, an estimate of the conditional (differential) entropy H(X|C) is

Ĥ(X|C) =

k∑
j=1

Ĥ(X|C = j) P̂ (C = j)︸ ︷︷ ︸
nj/n

=

k∑
j=1

d

2
ln

2πe
1

nj

∑
i:Ci=j

‖Xi − µ̂j‖22

 nj
n

(4.8)

Therefore the entropy-based clustering (4.5) is implemented by solving

min
C

Ĥ(X|C) = min
C

k∑
j=1

ln

 1

nj

∑
i:Ci=j

‖Xi − µ̂j‖22

nj (4.9)

The k-means clustering is performed by

min
C

k∑
j=1

∑
i:Ci=j

‖Xi − µ̂j‖22 (4.10)

We can easily see that the optimization problem of the entropy-based clustering (4.9) differs from the k-means
clustering optimization problem (4.10) just because of the logarithm. In fact if ln is replaced by the identity
function, (4.9) and (4.10) are equivalent. However, the logarithm makes the entropy-based clustering more
robust than k-means and minimizes the conditional entropy in each cluster. The entropy based clustering
approach also allows for non-Gaussian or even non-parametric assumptions on the distribution of points in
each cluster by specifying an appropriate model and estimator for P (X|C = j).

4.3 Estimation of information theoretic quantities

Information theory often assumes the source distribution or probability models are known (as they can often
be designed in classical signal processing applications), however in modern signal processing and machine
learning applications, these need to be estimated from data i.e. samples from the probability models. We
saw an example of this in the clustering application where we estimated the conditional entropy by plugging-
in estimates of the mean and variance. Here we revisit that idea and few other estimators. We start by
discussing some estimations of entropy in discrete and continuous settings.

Lecture 4: Sept 12 4-5

4.4 Discrete Setting

We have a distribution P supported on a finite alphabet {1, . . . , d} with P (X = j) = pj (
∑d
j=1 pj = 1). We

observe independent samples {X}ni=1 ∼ P and would like to estimate some functional of P , say the entropy:

H(P) = −
d∑
j=1

pj log2(pj) (4.11)

4.4.1 Plugin Estimator

The classical estimator here is the plugin estimator. We use the sample to estimate the frequencies, p̂j =
1
n

∑n
i=1 1[Xi = j] and simply plug in these frequencies to obtain:

Ĥn = −
d∑
j=1

p̂j log2(p̂j) (4.12)

We will see that E
(
Ĥn −H

)2

= O
(

1
n

)
, i.e. the estimator achieves the parametric error rate (error decaying

as 1/n with number of samples).

References

Krause, Andreas, Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes:
Theory, efficient algorithms and empirical studies. The Journal of Machine Learning Research, 9, 235-284.

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing
submodular set functionsI. Mathematical Programming, 14.1, 265-294.

Faivishevsky, L. & Goldberger, J. (2010). A Nonparametric Information Theoretic Clustering Algorithm.
International Conference on Machine Learning (ICML), 2010.

