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24.1 Error exponents in Hypothesis Testing

In this lecture, we continue our discussion of using Sanov’s theorem to get error exponents in hypothesis
testing. Recall that the optimal test is the log likelihood ratio test which can be stated as follows in terms
of information theoretic quantities:

Log likelihood ratio = log
P0(xn)

P1(xn)

= n[D(Pxn ||P1)−D(Pxn ||P0)]

Thus, the decision region corresponding to the likelihood ratio test can be written as:

A(T ) =

{
xn : D(Pxn ||P1)−D(Pxn ||P0) >

1

n
log T

}
i.e. it is the region of the probability simplex bounded by the set of types for which the difference of the KL
divergence to the distributions under the two hypotheses is a constant, i.e. the boundary is parallel to the
perpendicular bisector of the line connecting P0 and P1. See Figure 24.1.

Figure 24.1: The decision region corresponding to a likelihood ratio test is demarcated by boundary that is
parallel to the perpendicular bisector of the line joining the distributions under the two hypotheses P0 and
P1.

To study how the probability of error decays as a function of n in hypothesis testing, we will use large
deviation theory (what is the probability that an empirical observation deviates from the true value).
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24.1.1 Error-exponents

Using Sanov’s theorem, we get that asymptotically the probability of false alarm (type I error)

α = P0(Ac) ≈ 2−nD(P∗
0 ||P0)

where P ∗0 = arg minP∈Ac D(P ||P0) and

β = P1(A) ≈ 2−nD(P∗
1 ||P1)

where P ∗1 = arg minP∈AD(P ||P1).

In next class, we will evaluate the form of P ∗1 (and P ∗0 ).

Let us evaluate the form of P ∗1 (and P ∗0 ). Notice from Figure 24.1 that since the decision regions are
delineated by a line parallel to the perpendicular bisector, P ∗0 (the projection of P0 onto Ac) is same as P ∗1
(the projection of P1 onto A). So we will derive the form of one of them, say P ∗1 (you can check following
the same arguments that the form of P ∗0 is indeed the same).

To evaluate P ∗1 , consider the following constrained optimization:

min
P

D(P ||P1) s.t. P ∈ A ≡ D(P ||P1)−D(P ||P0) >
1

n
log T

Forming the Lagrangian where λ > 0 and ν are Lagrange multipliers (notice that since we require λ > 0, we
consider the constraint written with a < instead of >):

L(P, λ, ν) = D(P ||P1) + λ(D(P ||P0)−D(P ||P1)) + ν
∑

P

=
∑
xn

P (xn) log
P (xn)

P1(xn)
+ λ

∑
xn

P (xn) log
P1(xn)

P0(xn)
+ ν

∑
xn

P (xn)

Taking the derivative with respect to P (xn):

log
P (xn)

P1(xn)
+ 1 + λ log

P1(xn)

P0(xn)
+ ν

∣∣∣∣
P=P∗

1

= 0

and setting it equal to 0 yields P ∗1 :

P ∗1 (xn) = e−ν−1Pλ0 (xn)P 1−λ
1 (xn) =

Pλ0 (xn)P 1−λ
1 (xn)∑

an∈Xn P
λ
0 (an)P 1−λ

1 (an)

where in the last step we substituted for ν by solving for the constraint
∑
xn P

∗
1 (xn) = 1. In the last

expression λ should be chosen to satisfy the constraint D(P ∗1 ||P1)−D(P ∗1 ||P0) = 1
n log T .

From the argument given above, P ∗1 = P ∗0 (= P ∗λ say) and the error exponents:

α ≈ 2−nD(P∗||P0)

and
β ≈ 2−nD(P∗||P1)

where

P ∗λ =
Pλ0 (xn)P 1−λ

1 (xn)∑
an∈Xn P

λ
0 (an)P 1−λ

1 (an)
.
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Different choice of threshold T correspond to different λ. Observe that when λ → 1, P ∗λ → P0 and when
λ→ 0, P ∗λ → P1, thus giving us the desired tradeoff between false alarm α and miss β probabilities.

If we take a Bayesian approach, the overall probability of error P
(n)
e = αPr(H0) + βPr(H1) and define the

best achievable exponent in Bayesian probability of error,

D∗ = lim
n→∞

min
A⊆Xn

− 1

n
P (n)
e .

Using the above error exponents for false alarm (type I) and miss (type II) probabilities of error, we have:

Theorem 24.1 (Chernoff Theorem) The best achievable exponent in Bayesian probability of error

D∗ = D(P ∗λ∗ ||P0) = D(P ∗λ∗ ||P1)

where λ∗ is chosen so that D(P ∗λ∗ ||P0) = D(P ∗λ∗ ||P1). The D∗ is commonly known as Chernoff informa-
tion.

Proof: Consider Pr(H0), P r(H1) to be constants not equal to 0 or 1.

P (n)
e ≈ Pr(H0)2−nD(P∗

λ ||P0) + Pr(H1)2−nD(P∗
λ ||P1) ≈ 2−nmin(D(P∗

λ ||P0),D(P∗
λ ||P1))

The right hand side is minimized if λ is such that D(P ∗λ ||P0) = D(P ∗λ ||P1).

Notice that D∗ doesn’t depend on prior probabilities (unless one of the prior probabilities is vanishingly
small), and hence the effect of the prior is washed out for large sample sizes.

If we take a Neyman-Pearson approach instead, and require the probability of false alarm to be fixed (or
converging to 0 arbitrarily slowly), what is the best error exponent for the probability of miss?

Theorem 24.2 (Chernoff-Stein’s Lemma) Assume D(P0||P1) <∞. For 0 < ε < 1/2, define

βεn = min
A⊆Xn,α<ε

β

Then

lim
ε→0

lim
n→∞

1

n
log βεn = −D(P0||P1).

Inuitively, if we allow α to be fixed, then P ∗λ = P0 (exponent does not decay) and hence β ≈ 2−nD(P0||P1),
i.e. we can achieve a faster error exponent on one type of error probability if we allow the other type of error
probability to be fixed or decay arbitrarily slowly. For a rigorous proof, see Thomas-Cover Section 11.8.

These results can also be extended to multiple hypothesis testing, and the Chernoff information (exponent
of decay of probability of error) is miniD(P ∗i , Pi), where P ∗i is the information projection of Pi onto the set
of distributions in the complement of Ai (the optimal decision region for hypothesis i). In the NP sense, it
is mini 6=j D(Pj , Pi). See http://ieeexplore.ieee.org/abstract/document/4544997/ for details.

24.2 Cramer Rao Lower Bound

As a last topic, we discuss the Cramer Rao Lower Bound. So far, we had talked about minimax lower bounds
for testing and prediction that hold for a class of distributions or for all values of a parameter, but does not
let us quantify a performance lower bound for a specific parameter value.

http://ieeexplore.ieee.org/abstract/document/4544997/
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Cramer Rao is a technique for lower bounding the performance, for a specific parameter value, of estimators
that are unbiased, though it can be generalized to biased estimators as well. Let p(x; θ) be a probability
density function with continuous parameter θ ∈ Θ. Let X1, . . . , Xn be n i.i.d samples from this distribution,
i.e., Xi ∼ p(x; θ). Let θ̂(X1, . . . , Xn) be an unbiased estimator of θ, so that Eθ̂ = θ.

Now, if p(x; θ) satisfies the following two conditions:

1.

∂

∂θ

[∫
. . .

∫
θ̂(x1, . . . , xn)

n∏
i=1

p(xi; θ)

]
=

∫
. . .

∫
θ̂(x1, . . . , xn)

∂
∏n
i=1 p(xi; θ)

∂θ
dx1 . . . dxn (24.1)

This is a fairly mild continuity condition, allowing us to push the derivative through the integrals.

2. For each θ, the variance of θ̂(X1, . . . , Xn) is finite.

then the variance of the unbiased estimator is bounded as:

var(θ̂) ≥ 1

nEX
[(

∂ log p(x;θ)
∂θ

)2] =
1

−nEX
[
∂2 log p(x;θ)

∂θ2

] =
1

I(θ)
,

where I(θ) is the Fisher Information. Notice that the Fisher information characterizes the curvature of
the log likelihood function. CR lower bound states that larger the curvature, the smaller is the variance
since the likelihood changes sharply around the true parameter.

We can see that this is an important result as now we are able to bound the variance of unbiased estimators
for a specific parameter instead of over a class of parameters.

24.2.1 Proof

We will prove the Cramer-Rao Lower Bound for n = 1. We can prove the bound similarly for a more general
case with n > 1. Since we are considering unbiased estimators:

0 = Ep(x;θ)[θ̂ − θ] =

∫ (
θ̂(x)− θ

)
p(x; θ)dx

Differentiating both sides w.r.t θ and using Equation 24.1 we get

0 =
∂

∂θ

[∫ (
θ̂(x)− θ

)
p(x; θ)

]
=

∫
∂

∂θ

[(
θ̂(x)− θ

)
p(x; θ)

]
dx

=

∫ (
θ̂(x)− θ

) ∂p(x; θ)

∂θ
+ p(x; θ)

∂

∂θ

(
θ̂(x)− θ

)
︸ ︷︷ ︸
=−1(since θ̂⊥⊥θ)

dx

=

∫ (
θ̂(x)− θ

) ∂p(x; θ)

∂θ
dx+

∫
p(x; θ)(−1)dx

=

∫ (
θ̂(x)− θ

) ∂p(x; θ)

∂θ
dx−

∫
p(x; θ)dx︸ ︷︷ ︸

=1

=

∫ (
θ̂(x)− θ

)
p(x; θ)

∂ log (p (x; θ))

∂θ
dx− 1

(
using identity

∂ log f

∂g
=

1

f

∂f

∂g

)
or 1 =

∫ (
θ̂(x)− θ

)√
p(x; θ)

√
p(x; θ)

∂ log (p (x; θ))

∂θ
dx
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Taking square of both sides,

1 =

∫ (θ̂(x)− θ
)√

p(x; θ)︸ ︷︷ ︸
f

√
p(x; θ)

∂ log (p (x; θ))

∂θ︸ ︷︷ ︸
g

dx


2

Applying Cauchy-Schwartz inequality ((
∫
fg)2 ≤

∫
f2 ·

∫
g2), which is applicable under assumption 2 since

var is bounded, on RHS assuming the 2 functions to be f and g as shown above,

1 ≤
∫ (

θ̂(x)− θ(x)
)2
p(x; θ)dx︸ ︷︷ ︸

var(θ̂)

∫
p(x; θ)

[
∂ log (p (x; θ))

∂θ

]2
dx︸ ︷︷ ︸

E
[
( ∂
∂θ log p(x;θ))

2
]

Rearranging, we get the Cramer-Rao Lower bound for a single sample case.

24.2.2 Note: when θ is multi-dimensional

In this case, Fisher’s Information is a matrix where [I(θ)]ij = −nE[ ∂2

∂θi∂θj
log p(x; θ)]. Thus,

cov(θ̂) � 1

I(θ)
where A � B denotes that A−B is positive semi-definite.

=⇒ var(θ̂) ≥ 1

tr(I(θ))

24.2.3 Remarks

We note the following points with respect to Cramer-Rao Lower Bound (CRLB).

1. Both conditions on p(x; θ) are necessary for the bound to hold. For example, condition 1 does not hold
for the uniform distribution U(0, θ) and hence the CRLB is not valid. In other cases (e.g. if condition

2 does not hold), the CRLB bound may be too loose (sometimes just stating var(θ̂) ≥ 0).

2. CRLB holds locally for a specific parameter value θ.

3. CRLB applies to unbiased estimators alone, though a version that extends it to biased estimators also
exists, which we will see soon. Hence, it is useful for parametric problems (where unbiased estimator
typically have the same rate of convergence as the minimax optimal estimator) but not usually for
non-parametric or high-dimensional (d� n) problems (where the bias and variance tradeoff plays an
important role in determining the rate of convergence).

24.2.4 Examples

We see a few examples where CRLB is applicable. Assume n samples in each case.

1. Gaussian: N (µ, σ2)
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• The sample mean, µ̂ = 1
n

∑n
i=1Xn, for n samples is an unbiased estimator of the mean. This

attains CRLB for Gaussian mean and calculation of the Fisher information shows that var(µ̂) ≥ σ2

n
for n samples.

• Sample median, on the other hand, is an unbiased estimator of the mean that does not attain
CRLB.

2. Least Squares in Linear Regression model : X = Aθ + ε, ε ∼ N (0, σ2) The Least Squares solution

θ̂ = (ATA)−1ATX is unbiased in low-dimensional settings and attains CRLB.

Calculation of the Fisher information reveals that I(θ) = ATA
σ2 and hence cov(θ̂) � σ2(ATA)−1.

3. Gaussian with known mean : N (µ, σ2) Sample unbiased estimator for variance: θ̂ = 1
n

∑n
i=1(Xi−µ)2.

Its variance is calculated as var(θ̂) = 2σ4

n .

We get the CRLB bound as: var(θ̂) ≥ 2σ4

n .

Hence, we see that this estimator attains CRLB.

Note that if we had considered a biased estimator, it could result in smaller variance and hence smaller
mean square error (for unbiased estimators, mean square error is just the variance).

For example, θ̂biased = 1
n+2

∑n
i=1(Xi−µ)2. This has variance var(θ̂bias) = 2nσ4

(n+2)2 , clearly less than the

CRLB bound.

The bias for this estimator = 2σ2

n+2 . =⇒ Mean Squared Error = 2σ4

n+2 , which is a constant improvement
over unbiased estimators.

24.2.5 Extension of CRLB to biased estimators

CRLB is also extended to work with biased estimators. However, this bound is not widely used.

cov(θ̂) �

((
I +

db(θ)

dθ

)
I−1(θ)

(
I +

db(θ)

dθ

)T)
where I is the identity matrix and b(θ) is the bias.
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