10-704: Information Processing and Learning

Fall 2016

Lecture 22: Nov 16

Lecturer: Aarti Singh

Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

22.1 Strong data processing inequalities

How can we leverage these lower bound techniques to new settings that arise in modern learning problems? One approach is to use *strong data processing inequalities*, as modern learning settings can be thought of as a classical problem with some transformation to the data, i.e.

parameter
$$\rightarrow$$
 classical data \rightarrow new data (22.1)

$$\theta \to X \to Z$$
 (22.2)

Example: Local Differentially private channel: Channel $X \to Z$ must be differentially private for each data point, i.e. for each data point X_i we have distribution Q(Z|X) s.t.

$$\sup_{S} \sup_{x,x' \in \mathcal{X}} \frac{Q(Z_i \in S | X_i = x)}{Q(Z_i \in S | X_i = x')} \le exp(\alpha).$$
(22.3)

We would like to leverage existing technology to get lower bound in these settings for learning with Z. Clearly we can use data processing inequality, where we get $I(\theta, X) \ge I(\theta, Z)$. But this bound is quite loose. Thus we are interested in strong data processing inequalities, where suppose we have channel $\theta \to X \to Z$, and Q(Z|X) is the distribution of Z|X with certain property, we want to show that $I(\theta; Z) \le f(Q)I(\theta; X)$, where $f(Q) \ll 1$, which yields a much tighter lower bound.

22.2 Strong data processing inequality for α -local differentially private channel

The following result is from [DJW13a] (Theorem 1). Suppose we have a α -local differential privacy channel $\theta \to X \in \mathcal{X} \to Z \in \mathcal{Z}$ and we get n samples X_1^n . For privacy reasons we use each X_i to create a new sample Z_i via channel $Q(Z_i|X_i)$. We require a per-example and hence "local" privacy, which is much more stringent than previous definition of differential privacy, that

$$\sup_{S} \sup_{x,x' \in \mathcal{X}} \frac{Q(Z_i \in S | X_i = x)}{Q(Z_i \in S | X_i = x')} \le exp(\alpha)$$
(22.4)

The high-level claim is that if $\theta \to X \to Z$ is a α -locally differentially private channel, then $I(\theta, Z) \leq \alpha^2 I(\theta, X)$. More formally,

Theorem 22.1 Let P_1 , P_2 be distribution of \mathcal{X} and let Q be a channel distribution that guarantees α differential privacy ($\alpha \geq 0$). Define $M_i(S) = \int Q(S|x) dP_i(X)$, i = 1, 2 to be the marginal distribution.
Then

$$KL(M_1||M_2) + KL(M_2||M_1) \le (e^{\alpha} - 1)^2 ||P_1 - P_2||_{TV}^2.$$
(22.5)

Note for α small, where $e^{\alpha} - 1 \leq 2\alpha$ so we can write the rhs like

$$\leq c\alpha^2 ||P_1 - P_2||_{TV}^2 \tag{22.6}$$

The above theorem gives us an α^2 contraction in KL divergence, which means the effective sample size goes from n to $n\alpha^2$. This means that if we had n samples in the differentially private setting, it is as if we only had $n\alpha^2$ samples in the classical setting. So we need more samples in the new setting to learn well.

Proof: Let $m_1(z)$ be the density function of M_1 , and m_2 be the density function of M_2 with respect to measure μ . We know

$$KL(M_1||M_2) + KL(M_2||M_1) = \int m_1(z) \log \frac{m_1(z)}{m_2(z)} d\mu(z) + \int m_2(z) \log \frac{m_2(z)}{m_1(z)} d\mu(z)$$
(22.7)

$$= \int (m_1(z) - m_2(z)) \log \frac{m_1(z)}{m_2(z)} d\mu(z)$$
(22.8)

Claim 1: For α differentially private channel Q with conditional density $q(\cdot|x)$:

$$|m_1(z) - m_2(z)| \le \inf_x q(z|x)(e^\alpha - 1)||P_1 - P_2||_{TV}.$$
(22.9)

Claim 2:

$$a, b \in R, |\log \frac{a}{b}| \le \frac{|a-b|}{\min\{a,b\}}$$
(22.10)

If Claim 1 and Claim 2 are true, we have

$$\left|\log\frac{m_{1}(z)}{m_{2}(z)}\right| \leq \frac{\left|m_{1}(z) - m_{2}(z)\right|}{\min\{m_{1}(z), m_{2}(z)\}} \leq \frac{(e^{\alpha} - 1)\|P_{1} - P_{2}\|_{TV} \inf_{x} q(z|x)}{\min\{m_{1}(z), m_{2}(z)\}} \leq (e^{\alpha} - 1)\|P_{1} - P_{2}\|_{TV}$$
(22.11)

since $\min\{m_1(z), m_2(z)\} \ge \inf_x q(z|x)$ (by Fatou's lemma). Similarly

$$|m_1(z) - m_2(z)| \le (e^{\alpha} - 1) ||P_1 - P_2||_{TV} \inf_x q(z|x)$$
(22.12)

Thus

$$KL(M_1||M_2) + KL(M_2||M_1) \le (e^{\alpha} - 1)^2 ||P_1 - P_2||_{TV}^2 \int \inf_x q(z|x) d\mu(z)$$
(22.13)

And the integral is bounded by $\inf_x \int q(z|x) d\mu(z) = 1$.

Proof of Claim 1:

$$m_1(z) - m_2(z) = \int_{\mathcal{X}} q(z|x)(p_1(x) - p_2(x))d\mu(x)$$
(22.14)

$$= \int_{\mathcal{X}} q(z|x) \mathbb{1}\{p_1(x) \ge p_2(x)\}(p_1(x) - p_2(x))d\mu(x)$$
(22.15)

$$+ \int_{\mathcal{X}} q(z|x) \mathbb{1}\{p_1(x) < p_2(x)\}(p_1(x) - p_2(x))d\mu(x)$$
(22.16)

$$\leq \sup_{x \in \mathcal{X}} q(z|x) \int_{\mathcal{X}_{+}} |p_1(x) - p_2(x)| - \inf_{x \in \mathcal{X}} q(z|x) \int_{\mathcal{X}_{-}} |p_1(x) - p_2(x)|$$
(22.17)

$$= (\sup_{x} q(z|x) - \inf_{x} q(z|x)) \int_{\mathcal{X}} |p_1(x) - p_2(x)|$$
(22.18)

We know the second factor is simply the total variance $||P_1 - P_2||_{TV}$ by definition. And for the first factor

$$\sup_{x} q(z|x) - \inf_{x} q(z|x) \tag{22.19}$$

$$= \inf_{x'} q(z|x') \left[\frac{\sup_{x} q(z|x)}{\inf_{x'} q(z|x')} - 1 \right]$$
(22.20)

$$\leq (e^{\alpha} - 1) \inf_{x'} q(z|x') \tag{22.21}$$

where the last step follows due to α -local differential privacy.

Proof of Claim 2: Since $\log(x) \le x - 1$ for x > 0:

If
$$a > b$$
: $\log \frac{a}{b} \le \frac{a}{b} - 1 = \frac{a-b}{b}$ (22.22)

If
$$a \le b$$
: $\log \frac{b}{a} \le \frac{b}{a} - 1 = \frac{b-a}{a}$ (22.23)

Then we get $|\log \frac{a}{b}| \le \frac{|a-b|}{\min\{a,b\}}$.

22.3 Strong data processing inequality for compressive sensing

The following result is from [AKS15] (Theorem 8). We consider the specific setting of estimating the covariance from compressed data. Suppose we have $X_1, \ldots, X_n \sim N(0, \Sigma) \in \mathbb{R}^d$, and $Z = (U^T X, U)$, where $U \in \mathbb{R}^{d \times m}$ is an orthonormal basis for a random *m*-dimensional subspace, forms a channel as:

$$\Sigma \to X \to Z$$
 (22.24)

Now instead of seeing $\{X_i\}_{i=1}^n$, we get $\{Z_i\} = \{(U_i^T X_i, U_i)\}_{i=1}^n$. We are interested in estimating Σ and how much information can compressed data reveal about Σ .

Theorem 22.2 Let D_0 be a distribution of Z where $X \sim N(0, \eta I)$, $U \sim$ unif on the unit-sphere and $Z = U^T X$. Let D_1 be the same distribution but $X \sim N(0, \eta I + \gamma v v^T)$, for $||v||_2 = 1$, i.e. its covariance is a rank-1 perturbation of the covariance under D_0 . Then:

$$KL(D_1^n || D_0^n) \le \frac{3}{2} \frac{\gamma^2}{\eta^2} \frac{nm^2}{d^2} \approx \frac{m^2}{d^2} KL(N^n(0, \eta I + \gamma v v^T) || N^n(0, \eta I))$$
(22.25)

Similar to local differential privacy case, compression induces a contraction in KL divergence for Gaussian distributions, which can be used for lower bounds on covariance estimation for any distribution, and the effective sample size is $\frac{nm^2}{d^2}$ rather than $\frac{nm}{d}$. But this result is far more specific than the previous one since it applies for only covariance estimation from compressed data.

From the above theorem, we can show that:

$$\inf_{\hat{\Sigma}} \sup_{\Sigma} \mathbb{E}[||\hat{\Sigma} - \Sigma||_2] = \Omega\left(\sqrt{\frac{d^3}{nm^2}}\right)$$
(22.26)

while the uncompressed rate for covariance estimation in spectral norm is $\sqrt{\frac{d}{n}}$.

22.4 Strong data processing inequality for communication constrained mean estimation

The following result is from [DJW13b] (Proposition 2). We consider the specific setting of estimating the mean θ of a distribution supported on $[-1, 1]^d$ under an independent communication-constrained protocol where there are m machines, each with a communication budget of B_i , $i = 1, \ldots, m$ for each of the machines. Under the independent protocol, each machine has n/m fraction of datapoints X_i and is allowed to transmit Y_i which is no more than B_i bits to a central server which combines the information received from all machines to generate an estimate $\hat{\theta}$. There is no further exchange of information between the server and machines, or between them machines themselves¹. Also, for simplicity, we focus on the setting when n = m, i.e. only 1 data point per machine (see [DJW13b] for extension to general setting]. The goal is to lower bound the minimax communication constrained mean square error in estimating the mean:

$$\inf_{\text{ind protocols}(B_1,\ldots,B_m)} \quad \inf_{\hat{\theta}} \sup_{\theta} \mathbb{E}[\|\theta - \hat{\theta}\|^2]$$

To lower bound the error in estimating mean, we follow the recipe we discussed last time of (1) finding a good discretization \mathcal{P}' of the distributions under considerations $\mathcal{P}_{\theta\in\Theta}$ that are supported on $[-1,1]^d$ and have mean θ , (2) reducing the problem to testing between the distributions in \mathcal{P}' and (3) lower bounding the testing error using (a variant of) Fano's inequality. Along the way, we will establish a strong data processing inequality for communication constrained mean estimation/testing.

- **Discretization:** Consider the subset $\Theta' = \{\theta : \theta = \delta v, v \in \{-1, +1\}^d\}$ and define the corresponding distributions by $P_{\theta}(x_j = v_j) = \frac{1+\delta v_j}{2}$ and $P_{\theta}(x_j = -v_j) = \frac{1-\delta v_j}{2}$. Note that by construction the mean $\mathbb{E}_{X \sim P_{\theta}}[X] = \delta v = \theta$.
- Reduction to testing: Consider a slightly stronger reduction to testing [DJW13b,DW13] where we can lower bound the estimation error in terms of the probability of error of a test that is allowed to make mistakes: Let V be uniformly sampled from $\{-1,1\}^d$. For any $t \ge 0$,

$$\sup_{P_{\theta} \in \mathcal{P}'} \mathbb{E}_{X \sim P_{\theta}}[\|\theta - \hat{\theta}\|^2] \ge \delta^2(\lfloor t \rfloor + 1) \inf_{\hat{v}} P(d_H(\hat{v}, V) > t)$$

where $d_H(\hat{v}, V)$ denotes the hamming distance between the binary vectors V and \hat{v} . Notice that for t = 0, we get the standard reduction we discussed in last class.

• Lower bounding testing error: The probability of error of such tests can be lower-bounded by a stronger Fano's lemma [DJW13b,DW13]: Let $V \to Y_{1:m} \to \hat{v}$ be a Markov chain, where v is uniform on $\mathcal{V}\{-1,+1\}^d$. For any $t \ge 0$

$$P(d_H(\hat{v}, V) > t) \ge 1 - \frac{I(V, Y_{1:m}) + \log 2}{\log \frac{|\mathcal{V}|}{N_*}}$$

where $N_t = \max_{v \in \mathcal{V}} |\{v' \in \mathcal{V} : d_H(v, v') \leq t|$, i.e. size of largest set of binary vectors that are within hamming distance t from any of the binary vectors in \mathcal{V} .

Now, we just need to upper bound the $I(V, Y_{1:m})$. Notice that, for each machine, we have the following Markov chain: $V \to X_i \to Y_i$. Data processing inequality tells us that $I(V, Y_i) \leq I(X, Y_i)$, however we will use a Sronger Data processing inequality by realizing that

$$\sup_{x_j} \sup_{v,v'} \frac{P(x_j|v)}{P(x_j|v')} \le \frac{1+\delta}{1-\delta} = e^{\alpha} \quad \text{where} \quad \alpha = \log \frac{1+\delta}{1-\delta}$$

 $^{^{1}}$ The paper [DJW13b] also analyzes the interactive exchange setting, but for simplicity, in class we only focus on independent protocols.

This is a similar likelihood control as we had for α -local Differential Privacy. And hence, we have a similar data processing inequality (Lemma 3 in [DJW13b,DW13]):

$$I(V, Y_i) \le 2(e^{2\alpha} - 1)^2 I(X_i, Y_i)$$

Now we can bound $I(X_i, Y_i) \leq \min H(X_i), H(Y_i) \leq \min(d, B_i)$ since X_i is a d-dimensional binary vector and Y_i can only be represented using B_i bits due to communication constraint. We can now bound

$$I(V, Y_{1:m}) \le \sum_{i=1}^{m} I(V, Y_i) \le \sum_{i=1}^{m} 2(e^{2\alpha} - 1)^2 I(X_i, Y_i) = O\left(\delta^2 \sum_{i=1}^{m} \min(B_i, d)\right)$$

We can now complete the lower bound choosing t = cd for some small constant c

$$\sup_{P_{\theta} \in \mathcal{P}'} \mathbb{E}_{X \sim P_{\theta}}[\|\theta - \hat{\theta}\|^2] = \Omega\left(\delta^2 d\left(1 - \frac{\delta^2 \sum_{i=1}^m \min(B_i, d) + \log 2}{d}\right)\right)$$

Choosing $\delta^2 \simeq \frac{d}{\sum_{i=1}^{m} \min(B_i, d)}$, we have

$$\sup_{P_{\theta} \in \mathcal{P}'} \mathbb{E}_{X \sim P_{\theta}}[\|\theta - \hat{\theta}\|^2] = \Omega\left(\frac{d}{m} \frac{m}{\sum_{i=1}^m \min(B_i/d, 1)}\right)$$

This expression tells us the tradeoff between communication and statistical efficiency, since the error rate for estimating the mean without communication constraint from n = m samples is d/m. If $B_i \ge d$, then a similar error rate is possible, but if $B_i < d$, then there is a statistical price for communication constraint specified by B_i .

Remark: The technique of lower-bounding error using a construction based on hypothesis corresponding to the unit hypercube $\{-1, +1\}^d$ is also at the heart of Assouad's method (another method for proving lower bounds that we did not cover in class). Essentially, if the error metric is decomposable such that a packing $\mathcal{V} \in \{-1, +1\}^d$ can be found for which

$$\Phi(\rho(\hat{\theta}, \theta_v)) \ge \Phi(\delta) d_H(\hat{v}, v) = \Phi(\delta) \sum_{j=1}^d \mathbb{1}_{\hat{v}_j \neq v_j}$$

which many error metrics such as ℓ_1 and ℓ_2 loss satisfy, then the problem of testing between multiple hypothesis reduces to total error of multiple binary hypothesis tests.

References

- [DJW13a] JOHN C. DUCHI, MICHAEL I. JORDAN, AND MARTIN WAINWRIGHT, "Local Privacy and Statistical Minimax Rates", 54th Annual Symposium on Foundations of Computer Science (FOCS 2013).
- [AKS15] MARTIN AZIZYAN, AKSHAY KRISHNAMURTHY, AND AARTI SINGH, "Extreme Compressive Sampling for Covariance Estimation", https://arxiv.org/abs/1506.00898.
- [DJW13b] JOHN C. DUCHI, MICHAEL I. JORDAN, AND MARTIN WAINWRIGHT, "Information-theoretic lower bounds for distributed statistical estimation with communication constraints", Neural Information Processing Systems (NIPS 2013).
 - [DW13] J. C. DUCHI AND M. J. WAINWRIGHT, "Distance-based and continuum Fano inequalities with applications to statistical estimation", 2013, http://arxiv.org/abs/1311.2669.