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22.1 Strong data processing inequalities

How can we leverage these lower bound techniques to new settings that arise in modern learning problems?
One approach is to use strong data processing inequalities, as modern learning settings can be thought of as
a classical problem with some transformation to the data, i.e.

parameter → classical data → new data (22.1)

θ → X → Z (22.2)

Example: Local Differentially private channel: Channel X → Z must be differentially private for each data
point, i.e. for each data point Xi we have distribution Q(Z|X) s.t.

sup
S

sup
x,x′∈X

Q(Zi ∈ S|Xi = x)

Q(Zi ∈ S|Xi = x′)
≤ exp(α). (22.3)

We would like to leverage existing technology to get lower bound in these settings for learning with Z.
Clearly we can use data processing inequality, where we get I(θ,X) ≥ I(θ, Z). But this bound is quite loose.
Thus we are interested in strong data processing inequalities, where suppose we have channel θ → X → Z,
and Q(Z|X) is the distribution of Z|X with certain property, we want to show that I(θ;Z) ≤ f(Q)I(θ;X),
where f(Q)� 1, which yields a much tighter lower bound.

22.2 Strong data processing inequality for α-local differentially
private channel

The following result is from [DJW13a] (Theorem 1). Suppose we have a α-local differential privacy channel
θ → X ∈ X → Z ∈ Z and we get n samples Xn

1 . For privacy reasons we use each Xi to create a new sample
Zi via channel Q(Zi|Xi). We require a per-example and hence “local” privacy, which is much more stringent
than previous definition of differential privacy, that

sup
S

sup
x,x′∈X

Q(Zi ∈ S|Xi = x)

Q(Zi ∈ S|Xi = x′)
≤ exp(α) (22.4)

The high-level claim is that if θ → X → Z is a α-locally differentially private channel, then I(θ, Z) ≤
α2I(θ,X). More formally,
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Theorem 22.1 Let P1, P2 be distribution of X and let Q be a channel distribution that guarantees α-
differential privacy (α ≥ 0). Define Mi(S) =

∫
Q(S|x)dPi(X), i = 1, 2 to be the marginal distribution.

Then

KL(M1||M2) +KL(M2||M1) ≤ (eα − 1)2‖P1 − P2‖2TV . (22.5)

Note for α small, where eα − 1 ≤ 2α so we can write the rhs like

≤ cα2||P1 − P2||2TV (22.6)

The above theorem gives us an α2 contraction in KL divergence, which means the effective sample size goes
from n to nα2. This means that if we had n samples in the differentially private setting, it is as if we only
had nα2 samples in the classical setting. So we need more samples in the new setting to learn well.

Proof: Let m1(z) be the density function of M1, and m2 be the density function of M2 with respect to
measure µ. We know

KL(M1||M2) +KL(M2||M1) =

∫
m1(z) log

m1(z)

m2(z)
dµ(z) +

∫
m2(z) log

m2(z)

m1(z)
dµ(z) (22.7)

=

∫
(m1(z)−m2(z)) log

m1(z)

m2(z)
dµ(z) (22.8)

Claim 1: For α differentially private channel Q with conditional density q(·|x):

|m1(z)−m2(z)| ≤ inf
x
q(z|x)(eα − 1)||P1 − P2||TV . (22.9)

Claim 2:

a, b ∈ R, | log
a

b
| ≤ |a− b|

min{a, b}
(22.10)

If Claim 1 and Claim 2 are true, we have

| log
m1(z)

m2(z)
| ≤ |m1(z)−m2(z)|

min{m1(z),m2(z)}
≤ (eα − 1)‖P1 − P2‖TV infx q(z|x)

min{m1(z),m2(z)}
≤ (eα − 1)‖P1 − P2‖TV (22.11)

since min{m1(z),m2(z)} ≥ infx q(z|x) (by Fatou’s lemma). Similarly

|m1(z)−m2(z)| ≤ (eα − 1)‖P1 − P2‖TV inf
x
q(z|x) (22.12)

Thus

KL(M1||M2) +KL(M2||M1) ≤ (eα − 1)2||P1 − P2||2TV
∫

inf
x
q(z|x)dµ(z) (22.13)

And the integral is bounded by infx
∫
q(z|x)dµ(z) = 1.

Proof of Claim 1:

m1(z)−m2(z) =

∫
X
q(z|x)(p1(x)− p2(x))dµ(x) (22.14)

=

∫
X
q(z|x)1{p1(x) ≥ p2(x)}(p1(x)− p2(x))dµ(x) (22.15)

+

∫
X
q(z|x)1{p1(x) < p2(x)}(p1(x)− p2(x))dµ(x) (22.16)

≤ sup
x∈X

q(z|x)

∫
X+

|p1(x)− p2(x)| − inf
x∈X

q(z|x)

∫
X−
|p1(x)− p2(x)| (22.17)

=(sup
x
q(z|x)− inf

x
q(z|x))

∫
X
|p1(x)− p2(x)| (22.18)
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We know the second factor is simply the total variance ‖P1 − P2‖TV by definition. And for the first factor

sup
x
q(z|x)− inf

x
q(z|x) (22.19)

= inf
x′
q(z|x′)

[
supx q(z|x)

infx′ q(z|x′)
− 1

]
(22.20)

≤(eα − 1) inf
x′
q(z|x′) (22.21)

where the last step follows due to α-local differential privacy.

Proof of Claim 2: Since log(x) ≤ x− 1 for x > 0:

If a > b: log
a

b
≤ a

b
− 1 =

a− b
b

(22.22)

If a ≤ b: log
b

a
≤ b

a
− 1 =

b− a
a

(22.23)

Then we get | log a
b | ≤

|a−b|
min{a,b} .

22.3 Strong data processing inequality for compressive sensing

The following result is from [AKS15] (Theorem 8). We consider the specific setting of estimating the
covariance from compressed data. Suppose we have X1, . . . , Xn ∼ N(0,Σ) ∈ Rd, and Z = (UTX,U), where
U ∈ Rd×m is an orthonormal basis for a random m-dimensional subspace, forms a channel as:

Σ→ X → Z (22.24)

Now instead of seeing {Xi}ni=1, we get {Zi} = {(UTi Xi, Ui)}ni=1. We are interested in estimating Σ and how
much information can compressed data reveal about Σ.

Theorem 22.2 Let D0 be a distribution of Z where X ∼ N(0, ηI), U ∼ unif on the unit-sphere and
Z = UTX. Let D1 be the same distribution but X ∼ N(0, ηI + γvvT ), for ||v||2 = 1, i.e. its covariance is a
rank-1 perturbation of the covariance under D0. Then:

KL(Dn
1 ||Dn

0 ) ≤ 3

2

γ2

η2

nm2

d2
≈ m2

d2
KL(Nn(0, ηI + γvvT )||Nn(0, ηI)) (22.25)

Similar to local differential privacy case, compression induces a contraction in KL divergence for Gaussian
distributions, which can be used for lower bounds on covariance estimation for any distribution, and the

effective sample size is nm2

d2 rather than nm
d . But this result is far more specific than the previous one since

it applies for only covariance estimation from compressed data.

From the above theorem, we can show that:

inf
Σ̂

sup
Σ

E[||Σ̂− Σ||2] = Ω

(√
d3

nm2

)
(22.26)

while the uncompressed rate for covariance estimation in spectral norm is
√

d
n .
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22.4 Strong data processing inequality for communication con-
strained mean estimation

The following result is from [DJW13b] (Proposition 2). We consider the specific setting of estimating the
mean θ of a distribution supported on [−1, 1]d under an independent communication-constrained protocol
where there are m machines, each with a communication budget of Bi, i = 1, . . . ,m for each of the machines.
Under the independent protocol, each machine has n/m fraction of datapoints Xi and is allowed to transmit
Yi which is no more than Bi bits to a central server which combines the information received from all
machines to generate an estimate θ̂. There is no further exchange of information between the server and
machines, or between them machines themselves1. Also, for simplicity, we focus on the setting when n = m,
i.e. only 1 data point per machine (see [DJW13b] for extension to general setting]. The goal is to lower
bound the minimax communication constrained mean square error in estimating the mean:

inf
ind protocols(B1,...,Bm)

inf
θ̂

sup
θ

E[‖θ − θ̂‖2]

To lower bound the error in estimating mean, we follow the recipe we discussed last time of (1) finding a
good discretization P ′ of the distributions under considerations Pθ∈Θ that are supported on [−1, 1]d and
have mean θ, (2) reducing the problem to testing between the distributions in P ′ and (3) lower bounding the
testing error using (a variant of) Fano’s inequality. Along the way, we will establish a strong data processing
inequality for communication constrained mean estimation/testing.

• Discretization: Consider the subset Θ′ = {θ : θ = δv, v ∈ {−1,+1}d} and define the corresponding

distributions by Pθ(xj = vj) =
1+δvj

2 and Pθ(xj = −vj) =
1−δvj

2 . Note that by construction the mean
EX∼Pθ [X] = δv = θ.

• Reduction to testing: Consider a slightly stronger reduction to testing [DJW13b,DW13] where we
can lower bound the estimation error in terms of the probability of error of a test that is allowed to
make mistakes: Let V be uniformly sampled from {−1, 1}d. For any t ≥ 0,

sup
Pθ∈P′

EX∼Pθ [‖θ − θ̂‖2] ≥ δ2(btc+ 1) inf
v̂
P (dH(v̂, V ) > t)

where dH(v̂, V ) denotes the hamming distance between the binary vectors V and v̂. Notice that for
t = 0, we get the standard reduction we discussed in last class.

• Lower bounding testing error: The probability of error of such tests can be lower-bounded by a
stronger Fano’s lemma [DJW13b,DW13]: Let V → Y1:m → v̂ be a Markov chain, where v is uniform
on V{−1,+1}d. For any t ≥ 0

P (dH(v̂, V ) > t) ≥ 1− I(V, Y1:m) + log 2

log |V|Nt

where Nt = maxv∈V |{v′ ∈ V : dH(v, v′) ≤ t|, i.e. size of largest set of binary vectors that are within
hamming distance t from any of the binary vectors in V.

Now, we just need to upper bound the I(V, Y1:m). Notice that, for each machine, we have the following
Markov chain: V → Xi → Yi. Data processing inequality tells us that I(V, Yi) ≤ I(X,Yi), however we will
use a Sronger Data processing inequality by realizing that

sup
xj

sup
v,v′

P (xj |v)

P (xj |v′)
≤ 1 + δ

1− δ
= eα where α = log

1 + δ

1− δ
1The paper [DJW13b] also analyzes the interactive exchange setting, but for simplicity, in class we only focus on independent

protocols.
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This is a similar likelihood control as we had for α-local Differential Privacy. And hence, we have a similar
data processing inequality (Lemma 3 in [DJW13b,DW13]):

I(V, Yi) ≤ 2(e2α − 1)2I(Xi, Yi)

Now we can bound I(Xi, Yi) ≤ minH(Xi), H(Yi) ≤ min(d,Bi) since Xi is a d-dimensional binary vector
and Yi can only be represented using Bi bits due to communication constraint. We can now bound

I(V, Y1:m) ≤
m∑
i=1

I(V, Yi) ≤
m∑
i=1

2(e2α − 1)2I(Xi, Yi) = O

(
δ2

m∑
i=1

min(Bi, d)

)

We can now complete the lower bound choosing t = cd for some small constant c

sup
Pθ∈P′

EX∼Pθ [‖θ − θ̂‖2] = Ω

(
δ2d

(
1−

δ2
∑m
i=1 min(Bi, d) + log 2

d

))
Choosing δ2 � d∑m

i=1 min(Bi,d) , we have

sup
Pθ∈P′

EX∼Pθ [‖θ − θ̂‖2] = Ω

(
d

m

m∑m
i=1 min(Bi/d, 1)

)
This expression tells us the tradeoff between communication and statistical efficiency, since the error rate
for estimating the mean without communication constraint from n = m samples is d/m. If Bi ≥ d, then
a similar error rate is possible, but if Bi < d, then there is a statistical price for communication constraint
specified by Bi.

Remark: The technique of lower-bounding error using a construction based on hypothesis corresponding to
the unit hypercube {−1,+1}d is also at the heart of Assouad’s method (another method for proving lower
bounds that we did not cover in class). Essentially, if the error metric is decomposable such that a packing
V ∈ {−1,+1}d can be found for which

Φ(ρ(θ̂, θv)) ≥ Φ(δ)dH(v̂, v) = Φ(δ)

d∑
j=1

1v̂j 6=vj

which many error metrics such as `1 and `2 loss satisfy, then the problem of testing between multiple
hypothesis reduces to total error of multiple binary hypothesis tests.
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