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21.1 Minimax Risk and Le Cam’s lower bound

The minimax risk for class Θ and loss ` is

Rn(Θ) = inf
T

sup
θ∈Θ

Ex∼Pθ [` (T (x), θ)] ,

where T is any estimator. The upper bound of the minimax risk is given by designing an algorithm and the
lower bound of the minimax risk is given by information theoretic techniques.

Testing problems focus on specific loss function ` (T (x), θ) = 1{T (x) 6= θ}, so, the minimax risk is

Rn(Θ) = inf
T

sup
θ∈Θ

Px∼θ [T (x) 6= θ] .

In the previous lecture, we saw that if there are two parameters θ0 and θ1, then Le Cam’s method shows
that the minimax task is lower bounded by
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We saw lower bounds for a simple normal mean testing problem.

We also saw that we can use Le Cam’s method for composite hypothesis tests using the following two tricks:

1. We can always throw away parameters in the supremum and lower bound the risk:

inf
T

sup
Θ

Pθ [·] ≥ inf
T

sup
Θ′⊆Θ

Pθ [·] .

Any problem with 1{·} loss can be lower bounded by just choosing two parameters θ0, θ1 ∈ Θ and
computing their TV or KL.

2. We can also separate the parameter space into two regions and mix over these sets.
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T
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Θ

Pθ [T (x) 6= θ] ≥ inf
T
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j∈{0,1}

sup
θ∈Θj

Pθ [T (x) 6= j]
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where Pπ0
(A) = Eθ∼π0

[Pθ(A)], π0 is a distribution on Θ0, and π1 is a distribution on Θ1.

This is important for some problems. By mixing you can make the distributions much closer together
to prove stronger lower bounds. But it is often challenging to compute the divergence to mixtures.

21.2 Neyman-Pearson Lemma

For simple vs. simple tests, the optimal statistics is the likelihood ratio test

Λ(x) =
P0(x)

P1(x)
, T (x) = 1{Λ(x) ≤ threshold},

and

1

2
P0[T (x) 6= 0] +
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P1[T (x) 6= 1] =
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‖P0 − P1‖TV .

Proof: In last class, we saw that for any deterministic test T : X → {0, 1} with acceptance region A = {x ∈
X : T (x) = 1}

P0(T 6= 0) + P1(T 6= 1) = P0(A) + P1(Ac) = 1− P1(A) + P0(A) (21.1)

The result follows by noticing that this is minimized if A is the region where P0(x) ≤ P1(x).

21.3 Information Theoretic Connections and Fano’s Method

Another way to think of minimax testing is as a channel decoding problem. Given a channel θ → X, we
send θ ∈ {0, 1}, and you see the samples X ∼ Pθ. If P0 is close to P1, then you will have a high decoding
error, because when P0 close to P , H(θ|X) is big. Fano’s inequality characterizes this relationship and can
be used for proving minimax lower bounds for multiple hypothesis tests.

Consider the Markov chain θ → X → T . Let Pe = P[T 6= θ], for any test/decoder T Fano’s inequality
implies that

h(Pe) + Pe log(|Θ| − 1) ≥ H(θ|X),

or,

Pe ≥ H(θ|X)− log 2

log(|Θ| − 1)
,

where Pe = Pθ∼π,x∼Pθ [T (x) 6= θ]. Using the identities from earlier in the course, there are many equivalent
ways to state this inequality:

inf
T

sup
Θ
Pe ≥ 1− I(θ;X) + log 2

log |Θ|
= 1− Eθ∼π[KL(Pθ||Pπ)] + log 2

log |Θ|

since

I(θ;X) =

∫
π(θ)Pθ(X) log

(
π(θ)Pθ(X)

π(θ)
∫
π(θ)Pθ(X)

)
= Eθ∼π [KL(Pθ||Pπ)] .

This is the global Fano’s method.

We can weaken the mixture representation of KL to obtain the local or pairwise Fano method,

Eθ∼π [KL(Pθ||Pπ)] ≤ Eθ,θ′∼π [KL(Pθ||Pθ′)] .
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The last step follows from Jensen’s inequality since KL divergence is convex in the second argument.

In this case, if we have M hypothesis θ1, · · · , θM , then we obtain (here [M ] = 1, . . . ,M)

inf
T

sup
j∈[M ]

Pθj [T (x) 6= j] ≥ inf
T

1

M

M∑
j=1

Pθj [T (x) 6= j]

≥ 1−
1
M2

∑
i,j KL(Pθi ||Pθj ) + log 2

logM
.

21.4 Application to testing for nonzero in a 1-sparse vector in Rd

Hv : Xn
1
iid∼ N (µv, 1), (21.2)

where v ∈ {0, 1}d, with only 1 nonzero component. There are d hypothesis and each pair has KL(Pni ||Pnj ) =

2nµ2. The local Fano method then gives

Rn(Θ) ≥ 1− 2nµ2 + log 2

log d
,

which is bounded away from zero if

µ�
√

log d

n
.

Note that this rate is achieved for this problem by the largest coordinate of X̄ = 1
n

∑n
i=1Xi.

T (Xn) = arg max
j
X̄(j).

By Gaussian tail bound and union bound, we know that

P[∀j, |X̄(j)− µ(j)| ≥ ε] ≤ 2d exp{−2nε2},

or, with probability ≥ 1− δ:

∀j, |X̄(j)− µ(j)| ≤
√

log(2d/δ)

2n
.

The estimated coordinate ĵ agrees with the true one j? if:

X̄(j?) ≥ X̄(k), ∀ k
X̄(j∗)− µ(j∗) + µ(j∗)− µ(k) + µ(k) ≥ X̄(k)

µ(j∗)− µ(k) ≥ X̄(k)− µ(k) + µ(j∗)− X̄(j∗)

µ ≥ 2

√
log(2d/δ)

2n
.

so that if µ = ω(
√

log(d)
n ), this estimator has success probability tending to 1.

Theorem 1 For the 1-sparse recovery problem, the minimax rate is:

µ �
√

log d

n
.

Actually the same rate holds for the k-sparse problem, but it is slightly less obvious.

Also, there are many techniques for proving lower bounds, like Le Cam, local and global Fano just for testing
problems. It is important to know about all of these techniques because some are better for some problems.
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21.5 Estimation Problem

Now let’s turn to estimation problems, or more general losses. We write:

Rn(Θ) = inf
T

sup
Θ

E [Φ ◦ ρ(T (X),Θ)]

where ρ : Θ×Θ→ R+ is a semi-metric, Φ : R+ → R+ is a non-decreasing function with Φ(0) = 0.

Example: ρ(Θ,Θ′) = |Θ − Θ′| and Φ(t) = t2, so we are looking at mean square error. This can also cover
things like classification performance, excess log loss, things we have seen before.

21.5.1 Proving lower bounds

Step 1: Discretization. Fix a δ > 0, and find a large set of parameters Θ′ = {θi}Mi=1 ⊆ Θ, such that

ρ(θi, θj) ≥ 2δ, ∀ i 6= j.

This set is called a 2δ packing in the ρ-metric.

Step 2: Reduce to Testing. Consider j ∼ uniform([M ]) and X ∼ Pθj . Now if you cannot differentiate
between θi and some other θ, you will certainly make error Φ(δ) in the estimation problem. More formally:

Proposition 1 Let {θj}Mj=1 be a 2δ-packing in the ρ metric. Then:

Rn(Θ,Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

Pj∼unif([M ]),Xn1 ∼Pθj [Ψ(Xn
1 ) 6= j] .

Proof: Fix an estimator T . For any fixed θ, we have

E[Φ(ρ(T, θ))] ≥ E[Φ(δ)1{ρ(T, θ) ≥ δ}] = Φ(δ)P[ρ(T, θ) ≥ δ].

Now, define the test Ψ(T ) = arg minj ρ(T, θj). If ρ(T, θj) < δ, then Ψ(T ) = j by 2δ separation and triangle
inequality since

ρ(T, θk) ≥ ρ(θj , θk)− ρ(T, θj) > 2δ − δ = δ.

The converse of this statement is that if Ψ(T ) 6= v, then ρ(T, θv) ≥ δ.

sup
θ∈Θ

P[ρ(T, θ) ≥ δ] ≥ 1

M

M∑
j=1

Pj [ρ(T, θj) ≥ δ] =
1

M

M∑
j=1

Pj [Ψ(T ) 6= j].

Now take an inf over all T,Ψ.

Step 3: Use Fano or Le Cam to Lower Bound Pe in Testing Problems. We saw how to do this
earlier in this lecture and in the previous lecture.

21.6 Normal Means Estimation in `2

Let Xn
1 ∼ N (v, I), v ∈ Rd. The goal is to have EXn1 ‖T (Xn

1 )− v‖22 small. Let U be a 1/2 packing of the unit

ball in Rd. Note that the unit ball in d dimensions has a packing of size at least 2d in the `2 metric. For
each u ∈ U , let θu = δu ∈ Rd for some δ > 0, so that

‖θu − θu′‖2 = δ ‖u− u′‖2 ≥
δ

2
. (21.3)
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Figure 21.1: If you get θj instead of θj∗ , then your estimate θ̂ must be far from θj∗ .

Also notice that since u, u′ lie in the unit ball, ‖θu − θu′‖ ≤ δ. so the KL between each pair of θu, θu′ is

KL{Pθu ||Pθu′} ≤ nδ
2/2,

so the Fano’s Lemma gives

inf
T

1

M

M∑
j=1

Pθj [T (Xn
1 ) 6= j] ≥ 1− nδ2/2 + log 2

d log 2
,

thus, lower bound is

Rn(Θ, ‖·‖22) ≥
(
δ

4

)2 [
inf
T

EjPθj [T (Xn
1 ) 6= j]

]
≥

(
δ2

16

)(
1− nδ2/2 + log 2

d log 2

)

Now we can choose δ, set it to δ2 = d log 2/(2n). Then, for d ≥ 2 1, Rn ≥ cd/n for some constant c > 0.
This is the right parametric rate for this problem.

21.7 Strong data processing inequalities

How can we leverage these lower bound techniques to new settings that arise in modern learning problems?
One approach is to use strong data processing inequalities, as modern learning settings can be thought of as
a classical problem with some transformation to the data, i.e.

parameter → classical data → new data (21.4)

θ → X → Z (21.5)

1For d = 1 the problem reduces to testing two simple hypothesis for which we can use Le Cam’s method.
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Example: Local Differentially private channel: Channel X → Z must be differentially private for each data
point, i.e. for each data point Xi we have distribution Q(Z|X) s.t.

sup
S

sup
x,x′∈X

Q(Zi ∈ S|Xi = x)

Q(Zi ∈ S|Xi = x′)
≤ exp(α). (21.6)

We would like to leverage existing technology to get lower bound in these settings for learning with Z.
Clearly we can use data processing inequality, where we get I(θ,X) ≥ I(θ, Z). But this bound is quite loose.
Thus we are interested in strong data processing inequalities, where suppose we have channel θ → X → Z,
and Q(Z|X) is the distribution of Z|X with certain property, we want to show that I(θ;Z) ≤ f(Q)I(θ;X),
where f(Q)� 1, which yields a much tighter lower bound.

In the next class, we will see that (α, 0) differentially private learning leads to α2 contraction in KL divergence,
which means the effective sample size goes from n to nα2. This means that if we had n samples in the
differentially private setting, it is as if we only had nα2 samples in the classical setting. So we need more
samples in the new setting to learn well.


