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20.1 Review - Privacy

Last time, we talked about use of noisy random projections to give average privacy and differential privacy
guarantees. Summarizing it:

Privacy via Noisy Random projections
One popular way to privatize the data is to release only a random projection of the original data points
possibly corrupted by noise. In this case, if the original data is X, the privatized data is Y = AX+Z, where
A ∈ Rm×n is a random matrix independent of X and Z.

Using multi-antenna channel capacity, we showed that the average mutual information between the privatized

data Y and the original data X, over all possible input distributions p(X) supp(X)
I(X,Y )
n = O(mn ). In many

applications the number of random projections needed m� n and hence the mutual information decreases
as n increases. This can be viewed as an average privacy guarantee via random projections.

Differential Privacy via Noisy Random projections
Differential privacy is a stronger mathematical formalism for a privacy-preserving algorithm. We say an
algorithm is (ε, δ)-differentially private if for all inputs X,X ′ differing in at most one value, and for all
possible outcomes S:

Pr[A(x) ∈ S] ≤ eεPr[A(x′) ∈ S] + δ (20.1)

where A refers to the algorithm under consideration.

For noisy random projections, if Z has i.i.d. N (0, σ2) entries, then we can achieve (ε, δ) differential privacy
as long as:

σ ≥ (max
j
‖aj‖2)

√
2(log 1

2δ + ε)

ε
(20.2)

where aj are the columns of the matrix A. Adding Gaussian noise to preserve privacy is known as Gaussian
mechanism and random projection further enhances the level of privacy as E[‖aj‖22] = O(m/n) if A is an
m× n random Gaussian matrix with N (0, 1/n) entries and m� n.

20.2 Privacy via Rate Distortion

A rate-distortion approach to privacy proceeds by keeping a utility function in mind such as an empirical loss
R̂X(T ) = 1

n

∑n
i=1 lossXi(T ). The goal is to minimize mutual information between T and X while ensuring

some amount of utility, i.e.
min
p(T |X)

I(X;T ) s.t E[R̂X(T )] ≤ γ (20.3)

20-1
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To find the rate-distortion function, the Blhaut-Arimoto algorithm is used which starting from some initial
p(T ) iteratively updates

p(T |X) ∝ p(T )e−βR̂X(T )

This is precisely the exponential mechanism for differential privacy which outputs a random T from

p(T |X) proportional to e−βR̂X(T ) and is known to preserve (2β∆`1(R̂X(T )), 0) differential privacy, where

∆`1(R̂X(T )) = maxX∼X′ |R̂X(T ) − R̂X′(T )|1 and X ∼ X ′ denotes two inputs that differ in a single entry
bounded by 1. To see this, consider

P (T is generated when X is input)

P (T is generated when X ′ is input)
=

e−βR̂X(T )/
∑
T ′ e−βR̂X(T ′)

e−βR̂X′ (T )/
∑
T ′ e−βR̂X′ (T ′)

≤ e2β∆`1
(R̂X(T )).

We now switch to a different topic - fundamental limit of communication and learning. Recall that we
had shown achievability of channel capacity via construction of a random code, but not the converse i.e.
that no rate above capacity can be achieved. We now investigate information theoretic tools that allow us
to quantify such limits of communication. The same tools will also be extended to quantify the limits of
machine learning problems. A key tool is Fano’s inequality.

20.3 Fano’s Inequality

Suppose that we want to predict the sent code or channel input X from the received code or channel output Y .
If H(X|Y ) = 0, then intuitively, the probability of the error pe should be 0. Fano’s inequality characterizes
this relation more precisely.

Theorem 1. Suppose X is a random variable with finite outcomes in X . Let X̂ = g(Y ) be the predicted
value of X for some deterministic function g that also takes values in X . Then we have:

pe ≡ p(X̂ 6= X) ≥ H(X|Y )− 1

log |X |

Or, stated more strongly:
H(Ber(pe)) + pe log(|X | − 1) ≥ H(X|Y )

where Ber(pe) refers to the bernoulli error random variable E with Pr(E = 1) = pe.

Proof. Define random variable E =

{
1 if X̂ 6= X

0 else

By the Chain rule, we have two ways of decomposing H(E,X|Y ):

H(E,X|Y ) = H(X|Y ) +H(E|X,Y )

H(E,X|Y ) = H(E|Y ) +H(X|E, Y )

Also, H(E|X,Y ) = 0 since E is deterministic once we know the values of X and Y (and g(Y )). Thus we
have that

H(X|Y ) ≤ H(Ber(pe)) +H(X|E, Y )

To bound H(X|E, Y ), we use the definition of conditional entropy:

H(X|E, Y ) = H(X|E = 0, Y )p(E = 0) +H(X|E = 1, Y )p(E = 1)
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We will first note that H(X|E = 0, Y ) = 0 since E = 0 implies that X = g(Y ) and hence, if we observe both
E = 0 and Y,X = g(Y ) is no longer random. Also, P (E = 1) = pe.

Next, we note that H(X|E = 1, Y ) ≤ log(|X | − 1). This is because if we observe E = 1 and g(Y ), then X
cannot be equal to g(Y ) and thus can take on at most |X | − 1 values.

Putting everything together, we have

H(Ber(pe)) + pe log(|X | − 1) ≥ H(X|Y )

as desired.

Next, we will use Fano’s inequality to characterize when reconstruction of a code sent over a channel is not
possible, i.e. the probability of error is bounded away from zero. Similarly, Fano’s inequality will be used
to establish the fundamental limits of inference in machine learning problems by demonstrating when the
probability of error of recovering the true model from data is bounded away from zero.

20.4 Converse of Channel Coding Theorem

The converse of the channel coding theorem states that any rate R ≥ C is not achievable.

Proof. We use Fano’s inequality which states that for W → Y ,

Pr(Ŵ (Y ) 6= W ) ≥ H(W |Y )− 1

log |W |
(20.4)

where W is a rate R code (i.e. W ∈ {1, 2, · · · 2nR} and W is drawn uniformly at random.). Hence we can
write for the setting where W is the message sent over a discrete memoryless channel:

W → Xn
1 → channel→ Y n1

and

P (Ŵ 6= W ) ≥ H(W |Y )− 1

nR
=
H(W )− I(W,Y n)− 1

nR
=
nR− I(W,Y n)− 1

nR
(20.5)

We can additionally bound:

I(W,Y n) ≤ I(Xn, Y n)

= H(Y n)−H(Y n|Xn)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Yi−1, · · ·Y1, X
n)

≤
n∑
i=1

H(Yi)−H(Yi|Xi) =≤
n∑
i=1

I(Xi;Yi) ≤ nC

Hence, we can conclude that

P (Ŵ 6= W ) ≥ nR− nC − 1

nR
(20.6)

So that one cannot achieve rates smaller than the capacity.
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Similarly, we will use Fano’s inequality to lower bound the probability of error in hypothesis testing. Later,
we will show that other learning problems can be reduced to hypothesis testing, enabling us to establish
fundamental limits for other learning problems.

20.5 Minimax Theory For Testing Problems

The goal of minimax theory broadly is to understand the minimax risk

inf
T

sup
θ

Eθ
[
`(T (xn1 ), θ)

]
(20.7)

where T is an estimator, θ is some parameter and the inner term represents the risk.

Example: If the range of T is a distribution and ` is the log-loss, then this is equivalent to “minimax
redundancy”.

What are alternative definitions: Pointwise is not useful because if θ is fixed then taking infimum over
all estimators can do extremely well. Without the supremum, there is a deterministic estimator that does
not look at the data and simple outputs arg minθ̂ `(θ̂, θ). The Bayesian characterization, where we replace
the supremum with an expectation, is useful and in fact we will use it and draw connections with the
Redundancy-Capacity Theorem studied earlier.

For testing problems, the goal is to identify a hypothesis θ amongst candidate hypothesis Θ and we will let
the number of hypothesis |Θ| be finite and let ` be the indicator function. Hence we define:

R(Θ) = inf
T

sup
θ∈Θ

Eθ
[
1[T (Xn

1 ) 6= θ]
]

= inf
T

sup
θ

Pθ[T 6= θ] (20.8)

20.5.1 Examples

• Normal Means Testing: The null hypothesis is H0 : Xn
1

iid∼ N (−µ, I), Xi ∈ Rd and the alternate

hypothesis is H1 : Xn
1

iid∼ N (µ, I). Thus Θ = {−µ, µ} and the goal now is to derive a test for
determining the mean of the Gaussian. This is a simple-vs-simple hypothesis test.

• Simple vs. Composite Normal Means Testing: The null hypothesis H0 : Xn
1
iid∼ N (0, I), Xi ∈ Rd, and

the alternative is H1 : Xn
1
iid∼ N (µv, I), ‖v‖ ≥ 1, v ∈ Rd. This is a simple vs composite normal means

problem and we will see how to get bounds here as well.

• Multiple Hypothesis Testing: Hv : Xn
1
iid∼ N (µv, I), v ∈ {−1, 1}d, so that there are 2d hypotheses. We

will see how to derive lower bounds for this type of testing problem as well.

20.6 Simple vs Simple

We first study simple versus simple testing problems. For this case, Fano’s inequality is too loose and we
instead use Le Cam’s method that we discuss below. Let P0 and P1 be the two measures corresponding
to the null and alternative hypotheses. We first have :

inf
T

sup
θ∈0,1

Pθ[T 6= θ] ≥ inf
T

1

2
P0[T 6= 0] +

1

2
P1[T 6= 1] (20.9)
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We have replaced the supremum with an expectation. This is a general technique that we shall see over and
over. We now define the total variation distance.

Definition 2 (Total Variation Distance). The total variation distance between two measures is defined as:

‖P0 − P1‖TV = sup
A⊆X

(P1(A)− P2(A)) =
1

2

∫
|∂P0(x)

∂µ(x)
− ∂P1(x)

∂µ(x)
|dµ(x) =

1

2

∫
|p1(x)− p0(x)|dx (20.10)

The following lemma relates the probability of error to the total variation distance between the probability
distributions associated with the two hypothesis.

Lemma 3. For any distributions P0 and P1 over a space X .

inf
T
{P0(T 6= 0) + P1(T 6= 1)} = 1− ‖P0 − P1‖TV (20.11)

where the infimum is over all deterministic mappings T .

Proof. Any deterministic test T : X → {0, 1} has an acceptance region A = {x ∈ X : T (x) = 1}. Then

P0(T 6= 0) + P1(T 6= 1) = P0(A) + P1(Ac) = 1− P1(A) + P0(A) (20.12)

so

inf
T
{P0(T 6= 0)+P1(T 6= 1)} = inf

A
{1−P1(A)+P0(A)} = 1−sup

A
(P1(A)−P0(A)) = 1−‖P1−P0‖TV (20.13)

For us this means that

inf
T

sup
θ∈{0,1}

PXn1 ∼θ[T (Xn
1 ) 6= θ] ≥ 1

2
− 1

2
‖Pn0 − Pn1 ‖TV (20.14)

Before turning to the first example, we need one more result which we have actually seen before:

Lemma 4 (Pinsker’s Inequality). For any distributions P,Q:

‖P −Q‖2TV ≤
1

2
KL(P,Q) (20.15)

Also, the following fact will be useful.

Fact: KL(Pn, Qn) = nKL(P ;Q) where Pn is the n-fold product measure of P

Theorem 5 (KL-form of simple vs simple testing lower bound).

inf
T

sup
θ∈{0,1}

PXn1 ∼θ[T (Xn) 6= θ] ≥ 1

2
− 1

2

√
n

2
KL(P0||P1) (20.16)

We also state the KL-divergence between two d-dimensional Gaussians.

KL(N (µ0,Σ0),N (µ1,Σ1)) =
1

2

[
tr(Σ−1

1 Σ0) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)− d+ log

detΣ1

detΣ0

]
(20.17)
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Example 1 (Normal Means Testing). P0 = N (−µ, I), P1 = N (µ, I) and θ = {0, 1} with Xn
1 ∼iid Pθ then

KL(P0||P1) = 2‖µ‖2.

Hence we have

inf
T

sup
θ

P[T (Xn
1 ) 6= θ] ≥ 1

2
− 1

2

√
n‖µ‖2 (20.18)

Thus, the probability of error is bounded from below by a constant if ‖µ‖ = O(1/
√
n).

As a sanity check, consider d = 1. We can see that probability of error tending to 0 as n→∞ is achievable
if µ = ω(1/

√
n). We consider the simple test which thresholds the sample mean at 0.

Pe = P0(X̄ > 0) + P1(X̄ < 0) = P0(X̄ + µ > µ) + P1(X̄ − µ < −µ) ≤ 2e−nµ
2/2 (20.19)

where the last step follows from Gaussian tail bound. Thus, this test can achieve probability of error going
to zero as n→∞ if µ = ω(1/

√
n).

There are two more ways to use Le Cam’s method, as noted below.

1. We can always throw away parameters in the supremum and lower bound the risk:

inf
T

sup
Θ

Pθ [·] ≥ inf
T

sup
Θ′⊆Θ

Pθ [·] .

Any problem with 1{·} loss can be lower bounded by just choosing two parameters θ0, θ1 ∈ Θ and
computing their TV or KL. While throwing away parameters always gives you a valid lower bound,
the tightest lower bound is obtained by retaining the two parameters that are hardest to distinguish.
Identifying the hardest examples is a little bit of an art. For example, such a trick can be useful when

separating the hypothesis H0 : Xn
1
iid∼ N (0, σ2I) from the composite alternate H1 : Xn

1
iid∼ N (µ, σ2I) for

any µ ≥ µ0 > 0. In this case, the hardest hypothesis to distinguish from the null is Xn
1
iid∼ N (µ0, σ

2I)
and hence one can characterize the error of any test by its performance on these two hypotheses.

2. We can also separate the parameter space into two regions and mix over these sets.

inf
T

sup
Θ

Pθ [T (x) 6= θ] ≥ inf
T

sup
j∈{0,1}

sup
θ∈Θj

Pθ [T (x) 6= j]

≥ inf
T
{1

2
Eθ∼π0,x∼Pθ [1{T (x) 6= 0}] +

1

2
Eθ∼π1,x∼Pθ [1{T (x) 6= 1}]}

≥ 1

2
− 1

2
‖Pπ0

− Pπ1
‖TV ,

where Pπ0
(A) = Eθ∼π0

[Pθ(A)], π0 is a distribution on Θ0, and π1 is a distribution on Θ1.

This is important for some problems. By mixing you can make the distributions much closer together
to prove stronger lower bounds. Often mixing based bounds are used when the hypotheses in a subset

are equally hard to distinguish. For example, when null hypothesis is H0 : Xn
1
iid∼ N (0, σ2I) and the

alternate hypothesis is composite H1 : Xn
1
iid∼ N (µ, σ2I) where µ is s-sparse vector with entries either

µ0 or 0. But it is often challenging to compute the divergence between mixtures.

In next class, we will talk about alternate ways to prove minimax lower bounds for multiple hypothesis
testing and extend it to estimation.
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