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2.1 Information Quantities

In the previous class, we defined the information content of a random outcome and average information
content of a random variable:

• The Shannon Information Content of a random outcome x which occurs with probability p(x) is

log2

1

p(x)
.

• The Entropy in bits is the average uncertainty of a random variable X, i.e. a weighted combination
of the Shannon information content of each value x that random variable X could take, weighed by
the probability of that value/outcome:

H(X) =
∑
xεX

p(x) log2

1

p(x)
= −EX∼p[log2 p(X)]

Here X is the collection of all values x that X can take. It is also known as the alphabet over which
X is defined. Note that we are focusing on discrete random variables for now.

The entropy will turn out to be a fundamental quantity that characterizes the fundamental limit of
compression, i.e. the smallest number of bits to which a source distribution or model given by p(X)
can be compressed.

We now define some more information quantities that will be useful:

• The joint entropy in bits of two random variables X,Y with joint distribution p(x, y) is

H(X,Y ) =
∑

xεX ,yεY
p(x, y) log2

(
1

p(x, y)

)

• The conditional entropy in bits of Y conditioned on X is the average uncertainty about Y after
observing X.

H(Y |X) =
∑
xεX

p(x)H(Y |X = x) =
∑
xεX

p(x)
∑
yεY

p(y|x) log2

(
1

p(y|x)

)
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• Given two distributions p, q for a random variable X, the relative entropy between p and q is

D(p||q) = EX∼p[log

(
1

q(X)

)
]− EX∼p[log

(
1

p(X)

)
] = Ep[log

(
p

q

)
] =

∑
x

p(x) log

(
p(x)

q(x)

)
The base of the log can be 2, if information is measured in bits, or e if information is measured in nats.
The relative entropy is also known as the Information divergence or the Kullback-Leibler (KL)
divergence.

The relative entropy is the cost incurred if we used distribution q to encode X, when the true underlying
distribution is p. Consider the example from last lecture, where p(X) ∼ uniform({0, 1, . . . , 63}) and we
need 6 yes/no questions to guess each outcome, hence the average information content or entropy is
6 bits. If instead we consider the model q(X) ∼ uniform({0, 1, . . . , 127}), then 7 questions are needed
for each outcome. The extra price paid to encode an outcome x using model q when x is generated
according to the true model p is 1 bit, which is the relative entropy. We will see below that is also the
cost incurred in excess risk, under the negative loss likelihood loss, when the true model is p but the
estimated model is q.

• The Mutual Information between X and Y is the KL-divergence between the joint distribution and
the product of the marginals. Formally:

I(X;Y ) = D(p(x, y)||p(x)p(y)), (2.1)

where p(x, y) is the joint distribution of X,Y and p(x), p(y) are the corresponding marginal distribu-
tions. Thus, p(x)p(y) denotes the joint distribution that would result if X,Y were independent.

The mutual information quantifies how much dependence there is between two random variables. If
X ⊥ Y then p(x, y) = p(x)p(y) and I(X;Y ) = 0.

The mutual information will turn out to be a fundamental quantity that characterizes the fundamental
limit of transmission, i.e. the smallest number of bits that can be reliably transmitted through a noisy
channel with input X and output Y .

2.2 Connection to Maximum Likelihood Estimation

Suppose X = (X1, . . . , Xn) are generated from a distribution p (for example Xi ∼ p i.i.d.). In maximum
likelihood estimation, we want to find a distribution q from some family Q such that the likelihood of the
data is maximized.

arg max
q∈Q

q(X) = arg max
q∈Q

log q(X) = arg min
q∈Q
− log q(X)

In machine learning, we often define a loss function. In this case, the loss function is the negative log loss:
loss(q,X) = − log q(X) = log(1/q(X)). The expected value of this loss function is the risk: Risk(q) =
Ep[log(1/q(X))]. We want to find a distribution q that minimizes the risk. However, notice that minimizing
the risk with respect to a distribution q is exactly minimizing the relative entropy between p and q. This is
because:

Risk(q) = Ep[log(1/q(X))] = Ep
[
log

p(X)

q(X)

]
+ Ep

[
log

1

p(X)

]
= D(p||q) + Risk(p)

As we will see below, the relative entropy is always non-negative, and hence the risk is minimized by setting
q equal to p. Thus the minimum risk R? = Risk(p) = H(p), the entropy of distribution p. The excess risk,
Risk(q)−R? is precisely the relative entropy between p and q.
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2.3 Fundamental Limits in Information Theory

The source coding model is as follows:

Source Model
X1..Xn−−−−−→ Compressor

b1,...,bmbits−−−−−−−−→ Decompresser → Receiver

Let the data source be generated according to some distribution p(X). The rate of a source code is defined
as the average number of bits used to encode one source symbol , i.e. Ep[

codelength
#src symbols ] = Ep[m/n]. If the rate

of a code is less than the source entropy H(X), that is Ep[ codelength
#src symbols ] < H(X) then perfect reconstruction

is not possible. A distribution cannot be compressed below its entropy without loss. We will state and prove
it rigorously later in the course.

The channel coding model is as follows:

b1,...,bmbits−−−−−−−−→ Channel Encoder
X1,...,Xn−−−−−−→ Channel p(y|x)

Y1,...,Yn−−−−−→ Channel Decoder →

The rate of a channel code is defined as the average number of bits transmitted per channel use, i.e.
Ep[

#src symbols
codelength ] = Ep[m/n]. If the rate of a code is greater than the channel capacity C := maxp(X) I(X,Y ),

then perfect reconstruction is not possible.

The inference problem is similar to the channel coding problem except we do not design the encoder:

In the density estimation setting with pθ, θεΘ:

θ → Channel: pθ(X)
X1,...,Xn−−−−−−→ Decoder

θ̂−→

We can denote the estimated model as q = pθ̂. Under log loss:

Excess Risk(q) = Risk(q)− Risk(p) = D(p||q)

Fundamental limits of inference problems are often characterized by minmax lower bounds, i.e. the smallest
possible excess risk that any estimator can achieve for a class of models. For the density estimation problem,
the minmax excess risk is infqsuppεP D(p||q) and we will show that this is equal to the capacity C of the
corresponding channel. This would imply that for all estimators q, suppεP D(p||q) ≥ C.

We will state and prove these results formally later in the course. Information theory will help us identify
these fundamental limits of data compression, transmission and inference; and in some cases also demonstrate
that the limits are achievable. The design of efficient encoders / decoders / estimators that achieve these
limits is the common objective of Signal Processing and Machine Learning algorithms.

2.4 Useful Properties of Information Quantities

1. Entropy is always non-negative: H(X) ≥ 0, H(X) = 0⇔ X is constant
Proof: 0 ≤ p(x) ≤ 1 implies that log 1

p(x) ≥ 0

For example, consider a binary random variable X ∼ Bernoulli(θ) Then θ = 0 or θ = 1, then
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the outcome is certain (a constant) and implies that H(X) = 0. If θ = 1
2 , then H(X) = 1 (which is

the maximum entropy for a binary random variable since the distribution is uniform).

2. H(X) ≤ log |X | where X is the set of all outcomes with non-zero probability. Equality is achieved iff
X is uniform.

Proof: Let u be the uniform distribution over X, i.e. u(x) = 1
|X | and let p(x) be the probability mass

function for X.

D(p||u) =
∑

p(x) log
p(x)

u(x)
= log |X | −H(X)

0 ≤ D(p||u) = log |X | −H(X) by non negativity of relative entropy (stated and proved below)

3. Chain Rule: H(X,Y ) = H(X) +H(Y |X)

4. The following relations hold between entropy, conditional entropy, joint entropy, and mutual informa-
tion:

(a) H(X,Y) = H(X) + H(Y|X) = H(Y) + H(Y|X)

(b) I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y,X)

(c) I(X,Y) = H(X,Y) - H(X|Y) - H(Y|X)

(d) I(X,Y) = H(X) + H(Y) - H(X,Y)

5. (Gibbs Information Inequality) D(p||q) ≥ 0,= 0 if and only if p(x) = q(x) for all x.
Proof: Define the support of p to be X = {x : p(x) > 0}

−D(p||q) = −
∑
xεX

p(x) log
p(x)

q(x)

=
∑
xεX

p(x) log
q(x)

p(x)

≤ log
∑
xεX

p(x)
q(x)

p(x)

= log
∑
xεX

q(x) ≤ log 1 = 0
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The first inequality is Jensen’s inequality1 since log is concave. Because log is strictly concave we have

equality in the first inequality only if p is a constant distribution or if q(x)
p(x) is a constant c, for all x (i.e.

if q(x) = cp(x)). The second inequality is tight only when that constant c = 1 since
∑
xεX

p(x) = 1.

6. As a corollary, we get that I(X,Y ) = D(p(x, y)||p(x)p(y)) ≥ 0 and = 0 iff X,Y are independent, that
is, p(x, y) = p(x)p(y).

7. Conditioning cannot increase entropy, i.e. information always helps.

H(X|Y ) ≤ H(X)

with equality iff X and Y are independent.

Proof: 0 ≤ I(X;Y ) = H(X)−H(X|Y )

1For a concave function, the (weighted) average of function values at two points is less than function value at (weighted)
average of the two points.


