10-704: Information Processing and Learning

Fall 2016

Lecture 2: August 31

Lecturer: Aarti Singh

Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Information Quantities

In the previous class, we defined the information content of a random outcome and average information content of a random variable:

• The **Shannon Information Content** of a random outcome x which occurs with probability p(x) is

$$\log_2 \frac{1}{p(x)}.$$

• The **Entropy** in bits is the average uncertainty of a random variable X, i.e. a weighted combination of the Shannon information content of each value x that random variable X could take, weighed by the probability of that value/outcome:

$$H(X) = \sum_{x \in \mathcal{X}} p(x) \log_2 \frac{1}{p(x)} = -\mathbb{E}_{X \sim p}[\log_2 p(X)]$$

Here \mathcal{X} is the collection of all values x that X can take. It is also known as the alphabet over which X is defined. Note that we are focusing on discrete random variables for now.

The entropy will turn out to be a fundamental quantity that characterizes the fundamental limit of compression, i.e. the smallest number of bits to which a source distribution or model given by p(X) can be compressed.

We now define some more information quantities that will be useful:

• The **joint entropy** in bits of two random variables X, Y with joint distribution p(x, y) is

$$H(X,Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log_2 \left(\frac{1}{p(x,y)}\right)$$

• The **conditional entropy** in bits of Y conditioned on X is the average uncertainty about Y after observing X.

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x) = \sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log_2 \left(\frac{1}{p(y|x)}\right)$$

2-2 Lecture 2: August 31

• Given two distributions p, q for a random variable X, the **relative entropy** between p and q is

$$D(p||q) = \mathbb{E}_{X \sim p} \left[\log \left(\frac{1}{q(X)} \right) \right] - \mathbb{E}_{X \sim p} \left[\log \left(\frac{1}{p(X)} \right) \right] = \mathbb{E}_{p} \left[\log \left(\frac{p}{q} \right) \right] = \sum_{x} p(x) \log \left(\frac{p(x)}{q(x)} \right)$$

The base of the log can be 2, if information is measured in bits, or e if information is measured in nats. The relative entropy is also known as the **Information divergence** or the **Kullback-Leibler (KL)** divergence.

The relative entropy is the cost incurred if we used distribution q to encode X, when the true underlying distribution is p. Consider the example from last lecture, where $p(X) \sim \operatorname{uniform}(\{0,1,\ldots,63\})$ and we need 6 yes/no questions to guess each outcome, hence the average information content or entropy is 6 bits. If instead we consider the model $q(X) \sim \operatorname{uniform}(\{0,1,\ldots,127\})$, then 7 questions are needed for each outcome. The extra price paid to encode an outcome x using model q when x is generated according to the true model p is 1 bit, which is the relative entropy. We will see below that is also the cost incurred in excess risk, under the negative loss likelihood loss, when the true model is p but the estimated model is q.

• The **Mutual Information** between X and Y is the KL-divergence between the joint distribution and the product of the marginals. Formally:

$$I(X;Y) = D(p(x,y)||p(x)p(y)),$$
 (2.1)

where p(x, y) is the joint distribution of X, Y and p(x), p(y) are the corresponding marginal distributions. Thus, p(x)p(y) denotes the joint distribution that would result if X, Y were independent.

The mutual information quantifies how much dependence there is between two random variables. If $X \perp Y$ then p(x,y) = p(x)p(y) and I(X;Y) = 0.

The mutual information will turn out to be a fundamental quantity that characterizes the fundamental limit of transmission, i.e. the smallest number of bits that can be reliably transmitted through a noisy channel with input X and output Y.

2.2 Connection to Maximum Likelihood Estimation

Suppose $X = (X_1, ..., X_n)$ are generated from a distribution p (for example $X_i \sim p$ i.i.d.). In maximum likelihood estimation, we want to find a distribution q from some family Q such that the likelihood of the data is maximized.

$$\arg\max_{q\in\mathcal{Q}}q(X)=\arg\max_{q\in\mathcal{Q}}\log q(X)=\arg\min_{q\in\mathcal{Q}}-\log q(X)$$

In machine learning, we often define a loss function. In this case, the loss function is the negative log loss: loss(q, X) = -log q(X) = log(1/q(X)). The expected value of this loss function is the risk: $Risk(q) = E_p[log(1/q(X))]$. We want to find a distribution q that minimizes the risk. However, notice that minimizing the risk with respect to a distribution q is exactly minimizing the relative entropy between p and q. This is because:

$$\operatorname{Risk}(q) = \mathbb{E}_p[\log(1/q(X))] = \mathbb{E}_p\left[\log\frac{p(X)}{q(X)}\right] + \mathbb{E}_p\left[\log\frac{1}{p(X)}\right] = D(p||q) + \operatorname{Risk}(p)$$

As we will see below, the relative entropy is always non-negative, and hence the risk is minimized by setting q equal to p. Thus the minimum risk $R^* = \text{Risk}(p) = H(p)$, the entropy of distribution p. The excess risk, $\text{Risk}(q) - R^*$ is precisely the relative entropy between p and q.

Lecture 2: August 31 2-3

2.3 Fundamental Limits in Information Theory

The **source coding** model is as follows:

Source Model
$$\xrightarrow{X_1..X_n}$$
 Compressor $\xrightarrow{b_1,...,b_mbits}$ Decompresser \rightarrow Receiver

Let the data source be generated according to some distribution p(X). The rate of a source code is defined as the average number of bits used to encode one source symbol, i.e. $\mathbf{E}_p[\frac{\text{codelength}}{\#\text{src symbols}}] = \mathbf{E}_p[m/n]$. If the rate of a code is less than the source entropy H(X), that is $\mathbb{E}_p[\frac{\text{codelength}}{\#\text{src symbols}}] < H(X)$ then perfect reconstruction is not possible. A distribution cannot be compressed below its entropy without loss. We will state and prove it rigorously later in the course.

The **channel coding** model is as follows:

$$\xrightarrow{b_1,\dots,b_mbits} \boxed{\text{Channel Encoder}} \xrightarrow{X_1,\dots,X_n} \boxed{\text{Channel } p(y|x)} \xrightarrow{Y_1,\dots,Y_n} \boxed{\text{Channel Decoder}} \rightarrow$$

The rate of a channel code is defined as the average number of bits transmitted per channel use, i.e. $\mathbf{E}_p[\frac{\#\text{src symbols}}{\text{codelength}}] = \mathbf{E}_p[m/n]$. If the rate of a code is greater than the channel capacity $C := \max_{p(X)} I(X,Y)$, then perfect reconstruction is not possible.

The **inference** problem is similar to the channel coding problem except we do not design the encoder: In the density estimation setting with p_{θ} , $\theta \epsilon \Theta$:

$$\theta \to \boxed{\text{Channel: } p_{\theta}(X)} \xrightarrow{X_1, \dots, X_n} \boxed{\text{Decoder}} \xrightarrow{\hat{\theta}}$$

We can denote the estimated model as $q = p_{\hat{\theta}}$. Under log loss:

Excess
$$Risk(q) = Risk(q) - Risk(p) = D(p||q)$$

Fundamental limits of inference problems are often characterized by minmax lower bounds, i.e. the smallest possible excess risk that any estimator can achieve for a class of models. For the density estimation problem, the minmax excess risk is $\inf_{\mathbf{q}} \sup_{\mathbf{p} \in \mathcal{P}} D(\mathbf{p}||\mathbf{q})$ and we will show that this is equal to the capacity C of the corresponding channel. This would imply that for all estimators \mathbf{q} , $\sup_{\mathbf{p} \in \mathcal{P}} D(\mathbf{p}||\mathbf{q}) \geq C$.

We will state and prove these results formally later in the course. Information theory will help us identify these fundamental limits of data compression, transmission and inference; and in some cases also demonstrate that the limits are achievable. The design of efficient encoders / decoders / estimators that achieve these limits is the common objective of Signal Processing and Machine Learning algorithms.

2.4 Useful Properties of Information Quantities

1. Entropy is always non-negative:
$$H(X) \ge 0, H(X) = 0 \Leftrightarrow X$$
 is constant **Proof:** $0 \le p(x) \le 1$ implies that $\log \frac{1}{p(x)} \ge 0$

For example, consider a binary random variable $X \sim Bernoulli(\theta)$ Then $\theta = 0$ or $\theta = 1$, then

2-4 Lecture 2: August 31

the outcome is certain (a constant) and implies that H(X) = 0. If $\theta = \frac{1}{2}$, then H(X) = 1 (which is the maximum entropy for a binary random variable since the distribution is uniform).

2. $H(X) \leq \log |\mathcal{X}|$ where \mathcal{X} is the set of all outcomes with non-zero probability. Equality is achieved iff X is uniform.

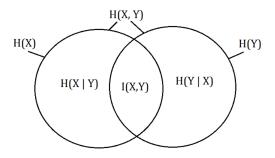
Proof: Let u be the uniform distribution over X, i.e. $u(x) = \frac{1}{|\mathcal{X}|}$ and let p(x) be the probability mass function for X.

$$D(p||u) = \sum p(x) \log \frac{p(x)}{u(x)} = \log |\mathcal{X}| - H(X)$$

 $0 \le D(p||u) = \log |\mathcal{X}| - H(X)$ by non negativity of relative entropy (stated and proved below)

3. Chain Rule: H(X,Y) = H(X) + H(Y|X)

4. The following relations hold between entropy, conditional entropy, joint entropy, and mutual information:



(a)
$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(Y|X)$$

(b)
$$I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y,X)$$

(c)
$$I(X,Y) = H(X,Y) - H(X|Y) - H(Y|X)$$

(d)
$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

5. (Gibbs Information Inequality) $D(p||q) \ge 0, = 0$ if and only if p(x) = q(x) for all x. **Proof:** Define the support of p to be $\mathcal{X} = \{x : p(x) > 0\}$

$$-D(p||q) = -\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

$$= \sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)}$$

$$\leq \log \sum_{x \in \mathcal{X}} p(x) \frac{q(x)}{p(x)}$$

$$= \log \sum_{x \in \mathcal{X}} q(x) \leq \log 1 = 0$$

Lecture 2: August 31 2-5

The first inequality is Jensen's inequality since log is concave. Because log is strictly concave we have equality in the first inequality only if p is a constant distribution or if $\frac{q(x)}{p(x)}$ is a constant c, for all x (i.e. if q(x) = cp(x)). The second inequality is tight only when that constant c = 1 since $\sum_{x \in \mathcal{X}} p(x) = 1$.

- 6. As a corollary, we get that $I(X,Y) = D(p(x,y)||p(x)p(y)) \ge 0$ and = 0 iff X,Y are independent, that is, p(x,y) = p(x)p(y).
- 7. Conditioning cannot increase entropy, i.e. information always helps.

$$H(X|Y) \le H(X)$$

with equality iff X and Y are independent.

Proof:
$$0 \le I(X;Y) = H(X) - H(X|Y)$$

¹For a concave function, the (weighted) average of function values at two points is less than function value at (weighted) average of the two points.