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19.1 Review - Capacity of continuous channels

Example (Single Gaussian Channel) Y = X + Z, Z ∼ N (0, σ2), power constraint E[X2] ≤ P .

C =
1

2
log

(
σ2 + P

σ2

)
Example (Parallel Independent Gaussian Channels) Y = X + Z, Z ∼ N(0, σ2In×n).

• Individual power constraint, same noise variance. E[X2
i ] ≤ P for i = 1, . . . , n.
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n

2
log

(
1 +

P

σ2

)

• Global power constraint, same noise variance. E[||X||2] ≤ P .

C =
n

2
log

(
1 +

P

nσ2

)
Achieved with equal power division amongst all channels Pi = P/n.

• Global power constraint, different noise variance. Z ∼ N(0, diag(σ2
1 , . . . , σ

2
n)), E[||X||2] ≤ P .

C = max
{Pi}ni=1

1

2

n∑
i=1

log

(
1 +

Pi
σ2
i

)
and the max is achieved when Pi is (constant − σ2

i )+, where the constant is chosen so that the total
power

∑
i Pi is P , i.e. a “water-filling” solution (Pi is either 0 or Pi + σ2

i is a constant).

Figure 19.1: Water filling, figure from [Cover2012]
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19.2 Correlated Gaussian Channel

Now we consider the case where Z is no longer independent in each channel, which means noise covariance
ΣZ can be an arbitrary covariance matrix. Suppose we still have the global power constraint E[||X||2] ≤ P .

Theorem 19.1 Suppose Y = X + Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel, Z ∼ N(0,ΣZ) and
X ⊥ Z. Given global power constraint i.e. E[||X||2] ≤ P , then the maximum capacity is achieved through
spectral water filling.

Proof: Consider the eigenvalue decomposition of ΣZ into UΛUT , where U is normalized orthogonal matrix
and Λ is a diagonal matrix. Then we can restate the problem in spectral domain as

Y =X + Z

UTY =UTX + UTZ

Ȳ =X̄ + Z̄, Z̄ ∼ N(0,Λ)

Here ΣX̄ = U>ΣXU , and hence the original power constraint can be written as tr(ΣX) ≤ P and translating
this to X̄ we have tr(ΣX̄) = tr(U>ΣXU) = tr(ΣXUU

>) = tr(ΣX) ≤ P .

We know for X ∈ Rn ∼ N(0,ΣX), H(X) = 1
2 log(2πe)n|ΣX |. Since X ⊥ Z, then ΣY = ΣX + ΣZ , so the

capacity is

C = max
p(x)

I(X,Y )

= max
tr(ΣX)≤P

1

2
log
|ΣX + ΣZ |
|ΣZ |

.

= max
tr(ΣX)≤P

1

2
log
|UTΣXU + Λ|

|Λ|
.

= max
tr(ΣX̄)≤P

1

2
log
|ΣX̄ + Λ|
|Λ|

.

This is maximized when ΣX̄ is diagonal matrix. Thus using the conclusion above, we see that the channels
are independent in the spectral domain and the problem is same as the last one but in the spectral domain.
Capacity is achieved when UTX ∼ N (0, diag(Pi)), or equivalently, X ∼ N (0, Udiag(Pi)U

T ). And the
capacity is maximized through spectral water filling, where the power constraint Pi for each X̄i is (constant−
Λii).

Channels with correlation between sub channels are similar to channels with feedback since n parallel channels
with correlation can be viewed as n sequential transmissions through a channel with memory. Thus, the
above expression also characterizes the capacity of channels with memory (but without feedback).

It can be shown that feedback (knowledge of past Yis at the sender) does not help increase the capacity
of memoryless channel, but for channels with memory, the capacity of channel with feedback can be larger
than the capacity of channel without feedback. For channels with memory, with feedback we have:

CFB = max
tr(ΣX)≤P

1

2
log
|ΣX+Z |
|ΣZ |
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which can be larger than the expression for channels with memory without feedback - the difference being
|ΣX+Z | instead of |ΣX + ΣZ | in the numerator. However, the capacity increase can be bounded as

CFB ≤ min(2C,C +
1

2
)

where C is the capacity without feedback. For details, see [Cover2012] Sec 9.6.

19.3 Multi-Antenna Gaussian Channels

Now suppose the channel performs a linear transformation or projection A ∈ Rm×n on X, which means the
channel now is

Y = AX + Z,X ⊥ Z,Z ∼ N(0, σ2I)

A real world case of these kind of channels is the multiple antennas channel in wireless communication where
the receiver has m antennas and the sender has n antennas. The projection A, known as the channel matrix,
may be deterministic or random.

We first analyze the deterministic case, where A is fixed and known. Suppose the SVD decomposition of A
is UΣV T , and the power constraint for X is still E[||X||2] ≤ P .

Y =AX + Z

UTY =ΣV TX + UTZ

Ȳ =ΣX̄ + Z̄

Since U and V are orthonormal matrices, thus E[||X||2] = E[||X̄||2] ≤ P and ΣZ̄ = σ2I. Now we get multiple
independent sub channels in the spectral domain where instead of different noise variance, the sub-channels
have different signal gains. Thus we still choose variance through water filling in the spectral domain, which
means now we will require the power constraint Pi for X̄i to follow Pi + 1

λi
σ2 = constant, where λi is the

square of the singular value of A. To see this, notice that maximum capacity is given by

C = max
tr(ΣX̄)≤P

1

2
log
|ΣΣX̄Σ + ΣZ̄ |

|ΣZ̄ |

Since Σ is diagonal matrix, the capacity is maximized for ΣX̄ = diag(Pj) and if λi is the square of the
singular value of A, then we have

=
1

2
log |I + diag(

λjPj
σ2

)|

=
1

2

min(n,m)∑
j=1

log

(
1 +

λjPj
σ2

)
This is maximized if Pj is either 0 or Pj + σ2/λj is constant.

19.4 Privacy

We now consider the use of channel capacity and rate-distortion to guarantee privacy. Privacy is becoming
a key concern as large datasets become publicly available. The goal of privacy is to enable releasing (a
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perturbed version of) data that preserves privacy of individual data points while ensuring some utility of
the privatized data for a given objective, e.g. the private data can be a perturbation of the original data
that still enables prediction of the label of a new data point to some accuracy while not revealing any of the
original data points. Clearly, the goals of privacy and utility are conflicting (one can always achieve perfect
privacy by mapping all data points to a constant value, but such a private data has no utility) and hence it
is of interest to understand the tradeoffs between the two goals.

19.4.1 Privacy via Noisy Random projections

One popular way to privatize the data is to release only a random projection of the original data points,
possibly corrupted with additive Gaussian noise. In this case, if the original data is X, the privatized data is
Y = AX +Z, where A ∈ Rm×n is a random matrix independent of X and Z. One natural notion of privacy
is the mutual information between the privatized data Y and the original data X, over all possible input
distributions p(X), i.e. precisely the capacity of the Gaussian channel linking X and Y . We will derive an
upper bound on the capacity. The capacity is given by

C = sup
p(X)

I(X;Y )

≤ sup
p(X)

I(X;Y,A)

= sup
p(X)

E[log
P (X,Y,A)

P (X)P (Y,A)
]

Since A ⊥ X, P (X|A) = P (X)

= sup
p(X)

E
[
log

P (X,Y |A)

P (X|A)P (Y |A)

]
= sup
p(X)

EA[I(X;Y |A)]

For a fixed A, we use the previous result on capacity of multi-antenna channels and upper bound it using
the trivial bound Pj ≤ P - this is pretty loose, but will suffice for our purposes.

≤1

2
EA[log |I + diag(

λjP

σ2
)|]

=
1

2
EA[log |[I + diag(

λjP

σ2
)]U>U |]

=
1

2
EA[log |I +

P

σ2
Udiag(λj)U

>|]

where last two steps follow since det(AB) = det(A)det(B), U>U = I and det(U>U) = 1.

=
1

2
EA[log |I +

P

σ2
UΣ2U>|]

=
1

2
EA[log |I +

P

σ2
AA>|]

Using Jensen’s inequality and concavity of log det

=
1

2
log |I +

P

σ2
E[AAT ]|
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If Aij is drawn from N (0, 1
n ) i.i.d., which is often the case in random projections, then E[AAT ] = Im. We

get

C ≤1

2
log |(1 +

P

σ2
)Im|

=
m

2
log(1 +

P

σ2
)

Thus we have supp(X) I(X,Y ) ∼ O(m), which means the maximum average information between X and Y ,

supp(X)
I(X,Y )
n = O(mn ). Basically it means the average leakage of information from X to Y is limited by

m/n which is typically decaying as n increases since in many applications the number of random projections
needed m� n. This can be viewed as an average privacy guarantee via random projections.

sup
p(x)

I(X,Y )

n
≤ m

2n
log(1 +

P

σ2
)→ 0 at a rate of

m

n
(19.1)

Clearly, privacy guarantees improve as m gets smaller, but how small can m be while guaranteeing some
utility?

In [Zhou-Lafferty-Wasserman], the authors characterize the utility of doing regression using data privatized
via noisy random projections. They consider the compressed linear regression model Y = AXβ + ε where
β is of dimension p and s-sparse, and X is of dimension n × p. They show that if m = s2 log(np), then

MSE → 0 and supp(β) = supp(β̂) using lasso regression (under standard incoherence assumptions on design
matrix X):

arg min
β

1

n
‖Y −AXβ‖2 + λ‖β‖1.

However, mutual information only preserves privacy on average. A stronger notion of privacy is differential
privacy that we discuss next.

19.4.2 Differential Privacy

Differential privacy is a mathematical formalism for a privacy-preserving algorithm. We say an algorithm is
(ε, δ)-differentially private if for all inputs X,X ′ differing in at most one value, and for all possible outcomes
S:

Pr[A(x) ∈ S] ≤ eεPr[A(x′) ∈ S] + δ (19.2)

where A refers to the algorithm under consideration.

19.4.2.1 Noisy Random projection approach

One can use noisy random projections to achieve differential privacy. If we let Y = AX +Z, where X is the
original data matrix and Z has i.i.d. N (0, σ2) entries, then we can achieve (ε, δ) differential privacy as long
as:

σ ≥ (max
j
‖aj‖2)

√
2(log 1

2δ + ε)

ε
(19.3)

where aj are the columns of the matrix A (see Theorem 1 of [Kenthapadi et al 2012]). The key idea is to

show that adding Gaussian noise to the output with σ ≥ ∆2

√
2(log 1

2δ+ε)

ε preserves (ε, δ) differential privacy,
where ∆2 is the `2-sensitivity of the output, i.e. the largest relative change in the output `2 norm caused by
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changing a single entry of the input. This is known as the Gaussian mechanism. The result now follows
by observing that the largest change in output for two inputs X,X ′ that differ in one-entry bounded by 1 is
‖A(X −X ′)‖2 ≤ maxj ‖aj‖2.
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