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18.1 Review

In the previous lecture, we defined three related notions - Minimal sufficient statistics originating in Statis-
tics, Information Bottleneck Principle used in Machine learning, and the Rate Distortion Function used in
Information Theory. Lets review these quickly.

Minimal sufficient statistics - A transformation T (X) of the data X is a minimal sufficient statistic if

T (X) ∈ arg min
S
I(X,S(X)) where S(X) is s.t. I(θ, S(X)) = max

T ′
I(θ, T ′(X)),

i.e., it is a transformation of the data X that has smallest mutual information with the data X while having
largest mutual information with θ.

Information Bottleneck Principle - generalizes the notion of minimal sufficient statistics and suggests
using a summary of the data T (X) that has smallest mutual information with the data X while preserving
some amount of information about an auxiliary variable Y :

T (X) ∈ arg min
S(X)

I(X,S(X)) where S(X) is s.t. I(Y, S(X)) ≥ γ

or equivalently,
T (X) ∈ arg min

S(X)
[I(X,S(X))− β I(Y, S(X))]

for some β ≥ 0. Thus, T (X) serves as an information bottleneck between X and Y , extracting information
from X that is relevant to Y .

Rate-distortion function - gives the limit of lossy compression, i.e. the smallest number of bits to which
we can compress X while allowing distortion no more than D in some distortion metric d(X,T ), where T is
the compressed version of data X.

R(D) = min
T
I(X,T ) where T is s.t. E[d(X,T )] ≤ D. (18.1)

Remark: The information bottleneck principle is essentially equivalent to lossy compression under the dis-
tortion function d(X,T ) = KL(p(Y |X)||p(Y |T )).

We also saw how to compute the rate-distortion function or the value of the information bottleneck objective
using an iterative procedure known as Blhaut-Arimoto Algorithm. For Rate-distortion function, we assume
we are given p(x) and we optimize over p(t|x). The objective is convex in p(t|x) and we initialize p(t|x) to
some value and then iterate over the following two updates:

p(t) =
∑
x

p(t|x)p(x)
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and
p(t|x) ∝ p(t)e−βd(x,t).

For information bottleneck, we assume we are given p(x) and p(y|x). The objective is convex in p(t|x) and
we initialize p(t|x) to some value and then iterate over the following three updates:

p(t) =
∑
x

p(t|x)p(x)

and

p(y|t) =
p(y, t)

p(t)
=

1

p(t)

∑
x

p(y|x, t)p(t|x)p(x) =
1

p(t)

∑
x

p(y|x)p(t|x)p(x)

and
p(t|x) ∝ p(t)e−βKL(p(y|x)||p(y||t)).

Remark: Blhaut-Arimoto algorithm converges to a global minimum since the objectives are convex.

Remark: Blhaut-Arimoto algorithm enables us to calculate the optimal value of the information bottleneck
objective and the rate-distortion function, but does not tell us the optimal statistic (though one could sample
from p(t|x)) or do the optimal encoding.

Remark: If p(x) and p(y|x) are not known, then these could be treated as latent variables and we could
optimize over these similar to EM (Expectation-Maximization) algorithm but the solution is only guaranteed
to converge to local optima in that case, since the problem is no longer convex.

18.2 Rate-Distortion Theorem

Next, we establish the rate-distortion theorem which establishes that the above definition of rate distortion
function indeed characterizes the limit of lossy compression.

Before, we state the theorem, we define a length n block code with rate R.

Definition: A length n block code is a mapping from a stream of symbols xn1 = x1 . . . xn to a codeword
c(xn1 ) and the rate of the code is R = E[`(Xn

1 )/n], the average number of bits per symbol.

Definition: A rate-distortion pair (R,D) is achievable if and only if there exists a rate R code such that

the reconstruction X̂n
1 based on the code c(Xn

1 ) satisfies

lim
n→∞

E
[
d(Xn

1 , X̂
n
1 )
]
≤ D.

Theorem (Rate-Distortion): The rate-distortion function R(D) defined in (18.1) gives the minimum
achievable rate at distortion level D.

The achievability proof of the rate-distortion theorem is similar to the proof of the source coding theorem.
The main difference is that we define a distortion-typical set Anε which consists of pairs of sequences that are

each typical, and moreover satisfy two additional properties: (1) |d(xn1 , x̂
n
1 ) − E

[
d(Xn

1 , X̂
n
1 )
]
| ≤ ε in order

for (xn1 , x̂
n
1 ) to be in A

(n)
ε . (2) | − 1

n log p(xn1 , x̂
n
1 )−H(X, X̂)| ≤ ε. We refer to sec 10.5 of Cover-Thomas for

the details.

The codebook in the proof is again random and based on an exponential lookup into 2nR codewords and
hence is not practical. Design of practical lossy compression methods that achieve close to rate-distortion
performance with finite block-lengths is the focus of research into coding schemes, specifically vector quan-
tization methods we briefly referred to in last lecture.
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18.3 Channel Coding

Recall that, in the source coding problem, we had the following model of information flow (switching notation
a bit):

Source
Wm

1

−−−−−−→ Source Encoder
c(Wm

1 )

−−−−−−→ Source Decoder
Ŵm

1

−−−−−−→ Receiver.

In particular, the decoder received exactly the stream transmitted by the encoder, and, given an input
distribution p(Wm

1 ), we were interested in designing a conditional distribution p(Ŵm
1 |Wm

1 ) minimizing the
expected length of the code.

In the channel coding problem, we are again given an input string Wm
1 which we may encode as Xn

1 = c(Wm
1 ).

This time, however, noise in introduced into Xn
1 , to create a new string Y n

′

1 , and then Y n
′

1 is given to the
decoder, as shown below:

Source
Wm

1

−−−−−→ Channel Encoder
Xn

1

−−−−−→ Channel
Y n′
1

−−−−−→ Channel Decoder
ŴM

1

−−−−−→ Receiver.

We first focus on discrete, memoryless channels, where this noise can be encoded as a (known) conditional
distribution p(y|x) (i.e., each symbol Xi is mapped to Yi according to a fixed distribution, so n′ = n), i.e. Yi
only depends on current channel input Xi and not on past (or future) inputs. The goal is then to design an
encoding in the form of a distribution p(x) that (asymptotically) achieves low probability of decoding errors

P
[
Ŵ 6= W

]
, while again minimizing the length n of the code (or, more precisely, maximizing the rate m

n as

m→∞). The main result, due to Shannon in 1948 [S48], is the Channel Coding Theorem, which identifies
the rates of codes that can achieve low decoding error in terms of the mutual information I(X;Y ).

18.3.1 The Channel Coding Theorem

Definition: Consider a discrete, memoryless channel. A rate R is called achievable iff there exists a rate R
channel code with asymptotically vanishing error, i.e.,

lim
m→∞

1

m

m∑
i=1

P
[
Ŵi 6= Wi

]
= 0.

Definition: The capacity C of a channel with noise distribution p(y|x) is defined as C := maxp(x) I(X;Y ).

Theorem (Channel Coding): The capacity of a channel is the maximum achievable rate.

Here, we will prove only the “if” statement (i.e., achievability). Later in the course, we will prove the “only
if” statement (i.e., necessity), which will be useful for proving lower bounds in machine learning problems.

Like the proof of achievability for the source coding theorem, the proof here uses a simple (albeit, impractical)
coding scheme based on the notion of typicality. Rather than just typicality of the input stream Xn

1 , however,
we require a stronger condition: joint typicality of the joint input and output stream (Xn

1 , Y
n
1 ).

Definition: Given a joint probability density p : X ×Y → R with marginal densities pX and pY , the jointly

typical set A
(n)
ε ⊆ (X × Y)

n
is the set of sequences {(xi, yi)}ni=1 ∈ (X × Y)

n
such that

1.
∣∣− 1

n

∑n
i=1 log pX(xi)−H(pX)

∣∣ < ε,

2.
∣∣− 1

n

∑n
i=1 log pY (yi)−H(pY )

∣∣ < ε,

3.
∣∣− 1

n

∑n
i=1 log p(xi, yi)−H(p)

∣∣ < ε.
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Theorem (Joint AEP): The jointly typical set A
(n)
ε satisfies

1) For {(xi, yi)}ni=1 drawn i.i.d. from p,

lim
n→∞

P[{(xi, yi)}ni=1 ∈ A(n)
ε ]→ 1.

2) |A(n)
ε | ≤ 2n(H(X,Y )+ε)

3) for sequences x̃1, . . . , x̃n ∼ pX and ỹ1, . . . , ỹn ∼ pY drawn independently,

P
[
{(x̃i, ỹi)}ni=1 ∈ A(n)

ε

]
≤ 2−n(I(X;Y )−3ε.

Proof: Property 1) follows from the Weak Law of Large Numbers and a union bound. Property 2) follows
from the basic AEP (which we proved with the source coding theorem). Property 3) follows from property

2) and parts 1. and 2. of the definition of A
(n)
ε because

P
[
{(x̃i, ỹi)}ni=1 ∈ A(n)

ε

]
=

∑
{(xi,yi)}ni=1∈A

(n)
ε

n∏
i=1

pX(xi)pY (yi)

≤ 2n(H(X;Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε) = 2−n(I(X;Y )−3ε,

Proof (Achievability of Channel Coding): Suppose R < C. Coding Scheme: The encoder and decoder operate
as follows:

1. Generate 2nR i.i.d. codewords of length n according to the distribution

p(xn1 ) =

n∏
i=1

p(xi).

These strings form the (ordered) codebook C, which is known to both the encoder and the decoder.
For W ∈ {1, . . . , 2nR}, we write Xn

1 (W ) to denote the W th codeword in C.

2. A length n binary message W is generated uniformly at random (so each P [W = w] = 2−nR).

3. The encoder transmits the codeword Xn
1 (W ).

4. The decoder receives a noisy codeword Y n1 from the channel.

5. The decoder outputs an estimated message Ŵ ∈ {1, . . . , 2nR} if Ŵ is the unique message with

(Xn
1 (Ŵ ), Y n1 ) ∈ A(n)

ε . If (Xn
1 (Ŵ ), Y n1 ) 6∈ A(n)

ε or another Ŵ ′ ∈ {1, . . . , 2nR} also satisfies (Xn
1 (Ŵ ′), Y n1 ) ∈

A
(n)
ε , the decoder outputs Ŵ = 0 (i.e., it reports failure).

Analysis: If we send m messages independently as described above, then

1

m

m∑
i=1

P
[
Wi 6= Ŵi

]
= P

[
W 6= Ŵ

]
= P

[
(Xn

1 (W ), Y n1 ) /∈ A(n)
ε

]
+ P

[
∃Ŵ ′ 6= Ŵ with (Xn

1 (Ŵ ′), Y n1 ) ∈ A(n)
ε

]
.

Part 1) of the joint AEP implies that that the first probability vanishes as n → ∞. For Ŵ ′ 6= Ŵ , Xn
1 (Ŵ ′)

was generated independently of Xn
1 (Ŵ ) from p (and hence independently of Y n1 ). Thus, applying a union

bound, part 3) of the joint AEP implies, for ε = I(X;Y )−R
6 > 0,

P
[
∃Ŵ ′ 6= Ŵ with (Xn

1 (Ŵ ′), Y n1 ) ∈ A(n)
ε

]
≤

∑
Ŵ ′ 6=Ŵ

P
[
(Xn

1 (Ŵ ′), Y n1 ) ∈ A(n)
ε

]
≤ 2nR2−n(I(X;Y )−3ε) → 0,
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as n→∞, proving the theorem.

Lets now try to understand the capacity of a channel via some examples.

Example (Binary Symmetric Channel) The binary symmetric channel BSC(p) parametrized by p ∈
[0, 1] has the noise distribution

P (y|x) =

{
p y 6= x
1− p y = x

, for all x, y ∈ {0, 1}.

That is, BSC(p) flips the input bit with probability p.

For any input distribution P (x), for X ∼ P (x) and Y ∼ P (y|X),

I(X;Y ) = H(Y )−H(Y |X) = H(Y )− h(p) ≤ 1− h(p). (18.2)

where h(p) = −p log p− (1− p) log(1− p) is the entropy of Bernoulli(p). Furthermore, if X ∼ Bernoulli( 1
2 ),

then by symmetry, then Y ∼ Bernoulli( 1
2 ), and so H(y) = 1. Thus, equality holds in (18.2), and so the

capacity of BSC(p) is CBSC(p) = 1− h(p). �

18.3.2 Continuous Channels

We now consider the case of continuous channels using Gaussian channel as an example.

Example (Single Gaussian Channel) Suppose the channel takes input X outputs Y = X + ε, where
ε ∼ N (0, σ2) is independent of X. In general, by choosing the distribution of X appropriately, we can make
I(X;Y ) arbitrarily large. For example, if X ∼ N (0, η2), then

I(X;Y ) = H(Y )−H(Y |X) =
1

2
log
(
2πe(σ2 + η2)

)
− 1

2
log
(
2πe(σ2)

)
=

1

2
log

(
σ2 + η2

σ2

)
→∞

as η →∞. Thus, the usual definition of channel capacity is meaningless. A practical solution is to introduce a
power constraint of the form E[X2] ≤ P . From the maximum entropy property of the Gaussian distribution,

it is easy to see that the capacity of the above channel is then 1
2 log

(
σ2+P
σ2

)
.

Example (Parallel Independent Gaussian Channels) Now consider the multi-dimensional case. Sup-
pose our input, output and noise now are in Rn space, and Z to is draw from N(0, σ2In×n). We consider
three settings:

• Individual power constraint, same noise variance. We have independent power constraint for
each sub channel as E[X2

i ] ≤ P for i = 1, . . . , n. Then the capacity is directly n times the capacity of
one channel.

Theorem 18.1 Suppose Y = X + Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel and Z ∼
N(0, σ2I). Given independent power constraint on each Xi, i.e. E[X2

i ] ≤ P . Then the capacity of this
channel is given by

Capacity =
n

2
log(1 +

P

σ2
)

• Global power constraint, same noise variance. Now consider the case if a global power constraint
like E[||X||2] ≤ P is used. With same condition as above, we can prove the capacity is maximized
when we equally distribute the power constraint over all channels, i.e. Pi = P

n and the capacity is
given as follows.
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Theorem 18.2 Suppose Y = X + Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel and Z ∼
N(0, σ2I). Given universal power constraint over X, i.e. E[||X||2] ≤ P . Then the capacity of this
channel is given by

Capacity =
n

2
log(1 +

P

nσ2
)

• Global power constraint, different noise variance. In above examples, our input channels have
independent noise with same variance. If our noise is still independent on each channel, but with
different variance, the maximum capacity is given through a “water filling” way.

Figure 18.1: Water filling, figure from [Cover2012]

Theorem 18.3 Suppose Y = X+Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel, Z ∼ N(0, diag(σ2
1 , . . . , σ

2
n)).

Given universal power constraint, i.e. E[||X||2] ≤ P , then the capacity of this channel is given through
a “water-filling” way. That is, the power allocated for each channel Pi is (constant− σ2

i )+, where the
constant is chosen so that the total power

∑
i Pi is P .

Proof: We know capacity C is defined as

C = max
p(x)

I(Xn, Y n)

= max
p(x)

(H(Y n)−H(Y n|Xn))

= max
p(x)

(H(Y n))−H(Zn), Since Y = X + Z and X ⊥ Z

= max
p(x)

n∑
i=1

H(Yi)−H(Zi), since Yis are independent and so are Zis

We know Yi = Xi + Zi, so E[Y 2
i ] = E[(Xi + Zi)

2] = E[X2
i ] + E[Z2

i ] = Pi + σ2. We know for a given
variance, normal distribution maximize the entropy, thus H(Yi) ≤ 1

2 log 2πe(Pi + σi).

≤ max
{Pi}ni=1

1

2

n∑
i=1

log 2πe(Pi + σ2
i )− 1

2

n∑
i=1

log 2πeσ2
i

= max
{Pi}ni=1

1

2

n∑
i=1

log

(
1 +

Pi
σ2
i

)
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Since the Pi ≥ 0 and
∑
i Pi ≤ P , the Lagrangian multiplier of the above optimization problem is

L =
1

2

n∑
i=1

log

(
1 +

Pi
σ2

)
+ λ(

∑
i

Pi − P ) + λiPi

∂L
∂Pi

=
1

2

1

1 + Pi

σ2
i

· 1

σ2
i

+ λ+ λi = 0

⇒ Pi + σ2
i =constant, ∀i s.t.λi = 0

Since complementary slackness implies that either Pi = 0 or λi = 0, the solution is either to put no
power in a channel or to put enough power so that the sum of power and noise variance is a constant
for all channels with non-zero power. Thus, we are putting more power to less noisy channels through
a water filling way, where we first try to add power to least noisy channels until its “height” is same
with the second least one, and continue until all power is allocated.

In next class, we will evaluate the capacity of correlated channels and the multi-antenna channel capacity.

18.3.3 General channels

For general distributions, it may not be possible to analytically calculate the capacity of a channel. Inter-
estingly, we can still use a variation of the Blhaut-Arimoto algorithm for calculating capacity since mutual
information is concave in p(x) and we can write the capacity as a dual maximization:

max
p(x)

I(X,Y ) = max
p(x)

∑
x,y

p(x)p(y|x) log
p(x|y)

p(x)
= max

p(x)
max
q(x|y)

∑
x,y

p(x)p(y|x) log
q(x|y)

p(x)

Now, we are given p(y|x) which characterizes the channel, and an iterative procedure that does maximization

over p(x) and then over q(x|y) = p(x)p(y|x)∑
x′ p(x′)p(y|x′) can be derived as follows: Initialize p(x). For fixed p(x),

update

q(x|y) =
p(x)p(y|x)∑
x′ p(x′)p(y|x′)

.

This update step is straight-forward. Now fix q(x|y) and update p(x) as

p(x) =

∏
y q(x|y)p(y|x)∑

x′
∏
y q(x

′|y)p(y|x′)
.

To derive this step, differentiate objective wrt p(x) for fixed q(x|y).
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