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Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy
of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

So far in the course, we have talked about lossless compression. In today’s class, we will begin talking about
lossy compression. We will also make connections to sufficient statistics and information bottleneck principle
in machine learning.

17.1 Sufficient statistic

We start by reviewing what we discussed about sufficient statistics in last lecture. Sufficient statistics provide
a (usually short) summary of the data, and are often useful for learning tasks.

A statistic is any function T (X) of the data X. if θ parametrizes the class of underlying data-generating
distributions, then for any statistic, we have the Markov chain

θ → X → T (X)

i.e. θ ⊥ T (X)|X and data processing inequality tells us that I(θ, T (X)) ≤ I(θ,X).

A statistic is sufficient for a parameter θ if θ ⊥ X|T (X), i.e. we also have the Markov chain

θ → T (X)→ X.

In words, once we know T (X), the remaining randomness inX does not depend on θ. This implies p(X|T (X))
does not depend on θ (this is a useful characterization when you may not want to think of θ as a random
variable). Also, I(θ, T (X)) = I(θ,X).

How do we find a sufficient statistic?

Theorem 17.1 (Fisher-Neyman Factorization Theorem) T (X) is a sufficient statistic for θ iff p(X; θ) =
g(T (X), θ)h(X).

Here p(X; θ) is the joint distribution if θ is random, or is the likelihood of data under pθ otherwise.

A sufficient statistic T (X) is minimal if T (X) = g(S(X)) for all sufficient statistics S(X). For example, if
X = X1, . . . , Xn ∼ Ber(θ), then T (X) = 1

n

∑n
i=1Xi is a minimal sufficient for θ but S(X) = X is not.

Note: A minimal sufficient statistic is not unique. For the above example, both 1
n

∑n
i=1Xi and

∑n
i=1Xi are

minimal sufficient statistic.

Lets mention an alternate characterization of a sufficient statistic and minimal sufficient statistic.
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• If T (X) is sufficient, then

I(θ, T (X)) = max
T ′

I(θ, T ′(X)) (= I(θ,X))

i.e. it is a statistic that has largest mutual information with θ among all other statistics T ′(X).

• If T (X) is minimal sufficient statistic, then

T (X) ∈ arg min
S
I(X,S(X)) s.t. I(θ, S(X)) = max

T ′
I(θ, T ′(X))

i.e. it is a statistic that has smallest mutual information withX while having largest mutual information
with θ.

The following theorem limits interest in sufficient statistics for complex learning tasks.

Theorem 17.2 (Pitman-Koopman-Darmois Theorem) For non-compactly supported distributions, ex-
act sufficient statistics with bounded (not growing with n) dimensionality exist only for distributions in the
exponential family.

17.2 Information Bottleneck Principle

The Information Bottleneck (IB) Principle is an information-theoretic approach to machine learning
that generalizes the notion of sufficient statistic. The IB principle suggests using a summary T (X) of the
data X that preserves some amount of information about an auxiliary variable Y :

min
T
I(X,T ) s.t. I(Y, T ) ≥ γ ≡ min

T
I(X,T )− βI(Y, T )

where β ≥ 0. Thus, T serves as an information bottleneck between X and Y , extracting information from
X that is relevant to Y . It can be thought of as dimensionality reduction. As β → ∞, T preserves all
information in X relevant to Y and becomes a minimal sufficient statistic for Y based on data X.

Some examples of application of IB method in machine learning:

1. Speech compression - ideally, the speech waveform can be compressed down to its entropy. But in
many applications, it is possible to compress further without losing important information about
words, meaning, speaker identity, etc. The auxiliary variable Y can be transcript of signal for speech
recognition, part of speech for grammar checking, speaker identity, etc.

2. Protein folding - Given the protein sequence data, we might compress it only preserving information
about its structure.

3. Neural coding - Given neural stimuli, we might seek a summary relevant to characterizing the neural
responses.

4. Unsupervised problems - In clustering documents, X can be document identity, Y can be words in the
document and T will be clusters of documents with similar word statistics.

5. Supervised problems - In document classification, X can be words in the document, Y the topic labels
and T will be clusters of words that are sufficient for document classification.
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Another viewpoint explored in [1] is to consider I(Y, T ) as the empirical risk and I(X,T ) as a regularization
term. As β →∞, we are maximizing I(Y, T ) and overfitting to the data X, while for lower β this is prevented
as we minimize I(X,T ).

The IB method can also be considered as lossy compression of the data X where the degree of information
lost about Y is controlled by β. In [2], it is argued that IB optimization provides a more general framework
that rate distortion function used in lossy compression. We discuss this next.

[1] http://www.cs.huji.ac.il/labs/learning/Papers/ibgen.pdf

[2] http://www.cs.huji.ac.il/labs/learning/Papers/allerton.pdf

17.3 Lossy Compression and Rate distortion function

We have seen that for lossless compression, we can only compress a random variable X down to entropy
number of bits. What if we allowed some loss or distortion in how accurately we can recover X? This
question is particularly inevitable for continuous random variables which cannot be compressed to infinite
precision with finite number of bits. Thus, we talk about lossy compression, also known as rate distortion
theory.

The rate-distortion function characterizes the smallest number of bits to which we can compress X while
allowing distortion D in some distortion metric d(X, X̂):

R(D) = min
X̂

I(X, X̂) s.t. E[d(X, X̂)] ≤ D

Observe that if we set D = 0 i.e. lossless compression is desired, then the rate distortion function R(0) =
I(X,X) = H(X), the entropy.

Examples of distortion functions are:

• Squared error distortion: d(X, X̂) = (X − X̂)2

• Hamming distortion: d(X, X̂) = 1X 6=X̂ .

The IB principle can be considered as a more general framework than rate-distortion since in many applica-
tions (such as speaker identification) there may not be a natural distortion function and it is easier to state
the goal as preserving information about an auxiliary variable Y (speaker identity). However, as we will see
in the next section, the IB method implicitly assumes the KL divergence as a distortion function.

Example of rate-distortion function:

• Gaussian source N (0, σ2) and squared-error distortion

We first find a lower bound for the rate distortion function

I(X, X̂) = H(X)−H(X|X̂)

≥ 1

2
log (2πe)σ2 −H(X − X̂)

≥ 1

2
log (2πe)σ2 − 1

2
log (2πe)D

=
1

2
log

σ2

D

http://www.cs.huji.ac.il/labs/learning/Papers/ibgen.pdf
http://www.cs.huji.ac.il/labs/learning/Papers/allerton.pdf
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where σ2 ≥ D. Note that we used the fact that conditioning reduces entropy (1st inequality), and
the maximum entropy under the second moment constraint E[(X − X̂)2] ≤ D is achieved by the
Gaussian distribution (2nd inequality). The lower bound can be achieved by the simple construction
in Fig. 17.1 with X̂ ∼ N (0, σ2 −D) and Z ⊥ X̂. It is easy to verify that H(X|X̂) = 1

2 log(2πe)D and

E[(X − X̂)2] = D.

Figure 17.1: Joint distribution for Gaussian source.

If σ2 < D, i.e. we are allowed mean square distortion larger than σ2, then if we don’t encode X at all,
i.e. R = 0, we can achieve mean square distortion D trivially.

The rate distortion function is

R(D) = min
p(x̂|x):E[d(X,X̂)]≤D

I(X; X̂) =

{
1
2 log σ2

D , if D ≤ σ2

0, if D > σ2

Notice that this only helps characterize the rate-distortion function (limit of lossy compression), but does not
tell us how to do the encoding. Moreover, this limit can only be achieved asymptotically, i.e. by encoding
large blocks of symbols, not individual symbols as the following result shows.

Example (Compressing Gaussians): When D ∈ (0, σ2), we can solve for the distortion in terms of the
rate: D(R) = σ22−2R. Suppose, we use a simple statistic

T =

{
E[X|X ≥ 0] if X ≥ 0
E[X|X < 0] else

.

A straightforward computation gives E[X|X ≥ 0] =
√

2
πσ, and, symmetrically, E[X|X < 0] = −

√
2
πσ, so

T = sign(X)
√

2
πσ. T can be transmitted using a single bit, and so, according to the rate-distortion theorem,

the optimal distortion is σ2

4 . On the other hand, while T appears to be an optimal 1-bit compression of X,

E[(X − T )2] = 2

∫ ∞
0

(
x−

√
2

π
σ

)2

φ(x) dx = 2

∫ ∞
0

(
x2 − 2x

√
2

π
σ +

2

π
σ2

)
φ(x) dx

= σ2 +
2σ2

π
− 4σ2

π
= σ2

(
π − 2

π

)
≈ 0.36σ2 > 0.25σ2.

Thus, the distortion is significantly (44% per symbol) higher than optimal. The intuition is that the rate-
distorition theorem is an asymptotic result; by transmitting T once per input X, we waste fractional bits
that could be used to reduce the average distortion if we encoded long input sequences with a block code,
i.e. do vector quantization.

17.4 Blahut-Arimoto algorithm for IB and R(D)

In some cases, such as Gaussian example above, the rate-distortion function can be computed explicitly.
More generally, a closed form solution may not exist and we resort to iterative methods. The Blahut-
Arimoto algorithm provides an iterative solution to both rate-distortion function and information bottleneck
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(and also channel capacity as we will see in next lecture). The solution will also reveal that IB is essentially
using KL divergence as the distortion measure.

Lets first consider the rate-distortion function. The objective that we need to minimize can be written as
(in analogy with the IB method):

I(X,T ) + βEX,T [d(X,T )]

where β ≥ 0, which we will optimize over p(t|x) which is a probability distribution (integrates to 1 and is
positive). The Lagrangian can be written as:

L = I(X,T ) + βEX,T [d(X,T )] +
∑
x

λx[
∑
t

p(t|x)− 1]− νx,tp(t|x)

where νx,t ≥ 0.

The iterative approach starts with an initial guess p(t) and iterates over updating p(t|x) and p(t).

The update equation for p(t) is

p(t) =
∑
x

p(t|x)p(x)

First recall

I(X,T ) =
∑
x,t

p(x, t) log
p(x, t)

p(x)p(t)

=
∑
x,t

p(t|x)p(x) log
p(t|x)

p(t)

=
∑
x,t

p(t|x)p(x) log p(t|x)−
∑
x,t

p(t|x)p(x) log p(t)

=
∑
x,t

p(t|x)p(x) log p(t|x)−
∑
t

p(t) log p(t)

Taking derivative of I(X,T ) for fixed x, t

∂I(X,T )

∂p(t|x)
= p(x) log p(t|x) + p(x)− ∂p(t)

∂p(t|x)
[log p(t) + 1]

= p(x)[log p(t|x) + 1− log p(t)− 1]

= p(x) log
p(t|x)

p(t)

Also,
∂EX,T [d(X,T )]

∂p(t|x)
= d(x, t)p(x)

Thus, we have the derivative of the Lagrangian is:

∂L
∂p(t|x)

= p(x)

[
log

p(t|x)

p(t)
+ βd(x, t) +

λx + νx,t
p(x)

]
Setting it equal to 0, we get the update equation for p(t|x):

p(t|x) ∝ p(t)e−βd(x,t)
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and coupled with the update equation for p(t):

p(t) =
∑
x

p(t|x)p(x)

yields the Blahut-Arimoto algorithm for calculating the rate-distortion function.

Note: The Blahut-Arimoto algorithm only helps calculate the rate-distortion function and does not provide
a way to do lossy compression.

Note: The algorithm assumes p(x) is given. One can also jointly optimize over p(x) and p(t|x) in an EM-like
fashion.

Similarly, we can derive an iterative algorithm for the IB method where the objective is

I(X,T )− βI(Y, T )

where β ≥ 0, which we will optimize over p(t|x) which is a probability distribution (integrates to 1 and is
positive). The Blahut-Arimoto algorithm for IB yields the following update equations (assuming p(x) and
p(y|x) are known):

p(t|x) ∝ p(t)e−βKL(p(y|x)||p(y|t))

p(t) =
∑
x

p(t|x)p(x)

p(y|t) =
p(y, t)

p(t)
=

1

p(t)

∑
x

p(y|x, t)p(t|x)p(x) =
1

p(t)

∑
x

p(y|x)p(t|x)p(x)

last step follows since Y is independent of T given X.

Thus, the effective distortion measure in IB is d(x, t) = KL(p(y|x)||p(y|t)), the KL divergence between
conditional distribution of Y given X and given T .
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