
10-704: Information Processing and Learning Fall 2016

Lecture 15: Oct 24
Lecturer: Aarti Singh

Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy
of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

15.1 Review: Sequential prediction | Universal coding with log-
loss

Definition 15.1 Regret

In an adversarial setting, the regret of using a predictor q instead of p for a sequence of n symbols xn1 is:

Reg(q, p) = sup
xn1

n∑
i=1

1

log q(xi|xi−1
1 )

− 1

log p(xi|xi−1
1 )

where xi1 = {x1, . . . , xi}.

Theorem 15.2 The minimax regret for a class {Pθ}θ∈Θ takes the following form:

Rn := inf
q

sup
p∈{Pθ}θ∈Θ

Reg(q, p) = Compn(Θ) := log

∫
sup
θ∈Θ

pθ(x
n)dµ(xn1 )

where Compn(Θ) is a measure of the complexity of the class {Pθ}, and µ is a base measure. If Compn(Θ) <
∞, then the normalized maximum likelihood distribution is uniquely minimax optimal. This distribution is
defined as:

q(xn1 ) =
supθ∈Θ pθ(x

n
1 )∫

supθ∈Θ pθ(x
n
1 )dxn1

Note that the normalized likelihood distribution is not a sequential predictor, since we must know the entire
sequence to compute q(xn1 ).

Definition 15.3 Redundancy

In the stochastic setting, when xn1 is drawn from some p ∈ P, we define the redundancy as

Red(q, p) = Exn1∼p
[ n∑
i=1

1

log q(xi|xi−1
1 )

− 1

log p(xi|xi−1
1 )

]
= D(pn||qn)

where D(pn||qn) is the KL divergence between p and q based on n samples.
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We considered mixture strategies, where q is a mixture over the {pθ}θ∈Θ, i.e.

qπ(xn1 ) =

∫
Θ

π(θ)pθ(x
n
1 )dθ

where π(θ) is a prior over Θ. This yields a sequential predictor via the exponential weighting approach as
follows.

Definition 15.4 Exponential weights update

Given a prior π(θ), at the ith iteration, the posterior is

π(θ|xi−1
1 ) ∝ π(θ)e

− log 1

pθ(x
i−1
1 )

which is exponentially proportional to pθ’s loss on xi−1
1 . Then we can use the sequential update for the ith

symbol:

qπi (xi|xi−1
1 ) =

∫
Θ

pθ(xi|xi−1
1 )π(θ|xi−1

1 )dθ

In the adversarial setting, for a finite collection Θ, the following theorem tells us that the universal regret is
constant:

Theorem 15.5 For all θ ∈ Θ and any sequence xn1 the exponential weights algorithm with initial choice of
uniform prior π(θ) = 1/d satisfies

log
1

qπ(xn1 )
≤ log

1

pθ(xn1 )
+ log d

Thus, the regret is independent of n and scales only logarithmically with |Θ| = d.

In the stochastic setting, the following theorem tells us that the mixture strategy for the worst case prior is
minimax optimal for redundancy:

Theorem 15.6 Redundancy-Capacity Duality

sup
π

inf
Q

∫
KL(Pθ||Q)dπ(θ) = sup

π
Iθ∼π(θ;X) = inf

Q
sup
θ
KL(Pθ||Q)

The right-most term is the minimax redundancy. The left-most term is the Bayesian redundancy for the
worst-case prior, where the inf is achieved by the Bayes optimal predictor which is a mixture distribution with
weights π(θ). The theorem states that the minimax redundancy is same as worst-case Bayesian redundancy,
and the minimax optimal strategy for redundancy is the mixture distribution corresponding to worst-case
prior. The term in the middle is the largest mutual information between a random variable θ drawn according
to prior π and is known as the capacity of the channel with θ as input and X as output (we will talk more
about channel capacity in a few lectures).

15.2 Sequential prediction: Beyond log-loss

We now extend these results to a general loss function.
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Definition 15.7 Loss Function

Let l be our loss function if l : X̂ × X → R+, where X is a space of symbols and X̂ is the space of our
predictions.

Example 15.8 0-1 Loss

l0/1(x̂, x) = 1{x̂ · x ≤ 0}

Example 15.9 Squared Loss

lsq(x̂, x) = (x̂− x)2

15.2.1 Redundancy bounds

The stochastic setting for general loss is analogous to redundancy (which uses the negative log likelihood
loss), we want to minimize

n∑
i=1

EXi∼pl(X̂i, Xi)

where p is the data-generating distribution. This is the same as the risk from last few lectures, but now we
are making predictions in a sequential fashion. For example, Xi is whether it rains and X̂i is our prediction
of whether it rains. Another example, Xi represents whether rock, paper, or scissors was chosen and X̂i is
what we guessed would be chosen.

If we knew p, then the Bayes optimal predictor is

x∗i = argmin
x∈X̂

EXi∼p[l(x,Xi)|Xi−1
i ]

= argmin
x∈X̂

∫
X
l(x, xi)dp(xi|Xi−1

1 )

However, we usually do not know p, so we use a different distribution q, which gives the prediction

x̂i = argmin
x∈X̂

EXi∼q[l(x,Xi)|Xi−1
i ]

= argmin
x∈X̂

∫
X
l(x, xi)dq(xi|Xi−1

1 )

Given the predictor using q, the performance of q against p is the loss-based redundancy

Redn(q, p, l) = EXn1 ∼p[
n∑
i=1

(l(X̂i, Xi)− l(X∗i , Xi))].

Theorem 15.10 If |l(x̂, x)− l(x∗, x)| ≤ L ∀x, x̂, x∗, then

1

n
Redn(q, pθ, l) ≤ L

√
2

n
Redn(q, pθ)
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This implies that if we use exponential weighting approach based on log-loss, then we have supθ
1
nRedn(q, pθ, l)→

0.

Note: This bound is not always tight, however. Under lsq, linear predictors can get logn
n instead of

√
logn
n

rate.

Remarks 15.11

1. The loss assumption holds for l0/1.

2. This holds for other loss functionals, such as lsq, if x, x̂, x∗ ∈ X , where X is a compact set.

For the proof of theorem 15.10, we will need to use the Pinsker’s and Holder’s inequalities.

Theorem 15.12 (Pinsker’s Inequality)

1

2

∫
|p(x)− q(x)| = ||P −Q||TV ≤

√
1

2
D(P ||Q)

Theorem 15.13 (Hölder’s Inequality) The following holds for p, q ∈ R s.t. 1/r + 1/s = 1

〈f, g〉 ≤ ‖f‖r‖g‖s

Proof: (Proof of theorem 15.10)

We will begin with redundancy and transform the equation so that we can apply Pinsker’s inequality.
Combined with Holder’s inequality, this will give us our bound.

Redn(q, pθ, l) =

n∑
i=1

Eθ[l(x̂i, xi)− l(x∗i , xi)]

=

n∑
i=1

∫
X i−1

1

pθ(x
i−1
1 )

∫
Xi
pθ(xi|xi−1

1 )[l(x̂i, xi)− l(x∗i , xi)]dxidxi−1
1

=

n∑
i=1

∫
X i−1

1

pθ(x
i−1
1 )

∫
Xi

(pθ(xi|xi−1
1 )− q(xi|xi−1

1 ))(l(x̂i, xi)− l(x∗i , xi))dxidxi−1
1

+

n∑
i=1

∫
X i−1

1

pθ(x
i−1
1 )

∫
Xi
q(xi|xi−1

1 ))(l(x̂i, xi)− l(x∗i , xi))dxidxi−1
1

Note that∫
X
q(xi|xi−1

1 )(l(x̂i, xi)− l(x∗i , xi))dxi = EQ[l(x̂i, xi)− l(x∗i , xi)|xi−1
1 ], and since x̂i is the argmin under q,

≤ 0
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which implies that, continuing from the previous equation and Holder’s inequality,

Redn(q, pθ, l) ≤
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||1 sup

x
|l(x̂i, xi)− l(x∗i , xi)|

≤ L
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||1, the loss bound condition,

≤ L
n∑
i=1

(∫
pθ(x

i−1
1 )

) 1
2
(∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||21

) 1
2

, by Holders,

= L

n∑
i=1

(∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||21

) 1
2

,

= L
√
n(

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||21)

1
2 , by Holders,

= L
√
n(2

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )KL(pθ(·|xi−1

1 )||q(·|xi−1
1 )))1/2, by Pinsker’s inequality,

= L
√

2n
√
KL(pnθ ||qn)

= L
√

2nRedn(q, pθ)

The second last step is essentially a chain rule for relative entropy (aka KL divergence). Dividing both sides
by n gives us the desired inequality.

15.2.2 Regret bounds

Now let us consider the adversarial setting, where examples or symbols are not generated according to any
distribution. We will consider the case where there are finitely many candidate models (also called experts)
we compete against. This setting can be recast as follows. We want to predict a sequence of variables
y1, . . . , yn ∈ R given a collection of experts {1, ..., d} (you may think of the experts as {Pθ}θ∈Θ, except that
with a general loss function and adversarial setting the experts don’t need to be probability distributions,
and d = |Θ|). In round i, expert θ makes a prediction xiθ ∈ R (again, you may think of xiθ as Pθ(xi|xi−1

1 ),
though the experts can now be more general). At each round, we see the expert predictions xiθ and make
our choice.

To make this setting concrete, consider if we used log-loss, and for example yi ∈ {0, 1} and xiθ ∈ {0, 1} are
Bernoulli random variables. Then when yi = 1, the loss incurred is log 1

xiθ
and when yi = 0, the loss incurred

is log 1
1−xiθ . We can write this as

l(xiθ, yi) = yi log
1

xiθ
+ (1− yi) log

1

1− xiθ
and use exponential weights strategy, with π0(θ) = 1

d , given as

πi(θ|Y i−1
1 ) ∝ π0(j)

i∏
t=1

xyttθ(1− xtθ)1−yt

= π0(j)e−
∑i
t=1 l(xtθ,yt)

Such a weighted update strategy can work for general losses if the losses behave similar to log loss. To
continue with our analysis for general losses, we will need to define weakly-exponential concave losses.
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First, we start by defining exponential concave losses. A loss l is exp-concave if for some η > 0 if f(z) =
e−ηl(z,y) is concave for all y. This implies that l satisfies

f(
∑
θ

πθzθ) ≥
∑
θ

πθf(zθ)

or equivalently,

e−ηl(
∑
θ πθzθ,y) ≥

∑
θ

πθe
−ηl(zθ,y).

Notice that the log-loss satisfies this for η = 1.

We now generalize this notion to weakly-exponential concave.

Definition 15.14 Weakly-Exponential Concave

A loss function is weakly-exponential concave if ∃c, η such that for any π ∈ Rd+,
∑
θ π(θ) = 1, then there is

some way to chose ŷi using xiθ such that ∀yi

l(ŷi, yi) ≤ −c log(
∑
θ

π(θ)e(−ηl(xiθ,yi))),

which is equivalent to

e(− 1
c l(ŷ,y)) ≥

∑
θ

π(θ)e(−ηl(xiθ,y)).

Then we say that l is (c, η)-realizable.

Such losses behave enough like the log loss that a Bayesian updating of the experts (playing a mixture of
experts) works.

Example 15.15

Log-loss is (1, 1)-realizable, with ŷi =
∑
θ π(θ)xiθ.

Example 15.16 0-1 loss

0-1 loss is (c, η)-realizable with any c such that c−1 ≤ log 2
1+e−η with

ŷ =
d∑
j=1

π(j)sign(xj)

i.e. we take a majority vote of the expert predictions under distribution π.

To see this, notice that when ŷ has the correct sign, then loss is 0 while −c log(
∑
θ π(θ)e(−ηl(xiθ,yi))) is

positive since
∑
θ π(θ)e(−ηl(xiθ,yi)) ≤ 1.

If ŷ has wrong sign, then we know at least (weighted by πθ) half of the values xi,θ have incorrect sign. Thus,∑
θ

π(θ)e(−ηl(xiθ,yi)) =
∑

θ : xi,θyi ≤ 0πθe
−η +

∑
θ : xi,θyi > 0πθ ≤

1

2
e−η +

1

2
.

Thus, to attain

l(ŷi, yi) = 1 ≤ −c log(
∑
θ

π(θ)e(−ηl(xiθ,yi)))
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it is sufficient that

1 ≤ −c log

(
1 + e−η

2

)
or

1/c ≤ log

(
2

1 + e−η

)
.

Now we can state a version of the exponential weights strategy for general losses. We initialize wj = 1 ∀j ∈ [d].
Over each turn t = 1, . . . , n, we update our weights

wtj = e−η
∑t
i=1 l(xij ,yi)

W t =
∑
j

wtj

πtj =
wtj
W t

Then choose ŷt satisfying definition 15.14, with π = πt and expert values {xtj}dj=1. That is, we choose ŷt
and suffer loss l(ŷt, yt), which can be used to update the weights again.

That brings us to our second goal of obtaining low regret.

Theorem 15.17 [HKW 98] Consider any weakly-exponentially concave loss that is (c, η)-realizable. For any
j ∈ [d] and any sequence yn1 ∈ Rn,

n∑
i=1

l(ŷi, yi) ≤ c log d+ cη

n∑
i=1

l(xij , yi).

That is, our total loss is logarithmic in d, and as the number of rounds goes to infinity, our per round loss
goes to zero.

Before we prove the theorem, let us go through the two examples:

Example 15.18 log-loss

Let y ∈ {0, 1}, xij ∈ [0, 1], ŷi =
∑
j π(j)xij, then the theorem holds for c = η = 1, so the regret

∑n
i=1 l(ŷi, yi)−∑n

i=1 l(xij , yi) w.r.t all experts is ≤ log d. Thus, even in the adversarial setting, using exponential weighting
yields a constant in n and logarithmic in d regret for log loss.

Example 15.19 0− 1 loss

Notice that log 2
1+e−η ≈

η
2 −

η2

8 , and we can set c−1 = log 2
1+e−η to find a bound on our regret. From the

theorem, for any sequence and for any set of experts,

Regret = [

n∑
i=1

l(ŷi, yi)−
n∑
i=1

l(xij , yi)]

≤ log d

log 2
1+e−η

+
η − log 2

1+e−η

log 2
1+e−η

n∑
i=1

l(xij , yi)

= O(
log d

η
+ η

n∑
i=1

l(xij , yi))

= O(
√
n log d)
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where the last step follows since the loss l ≤ 1 and choosing η ≈
√

log d
n .

Thus, for 0 − 1 loss, we have a per round regret of O(
√

(log d)/n) in the adversarial setting using a purely
sequential strategy. Thus, exponential weighting is a good strategy.

Proof: Proof of theorem 15.17. By definition of weakly-exponentially concave loss, l(ŷt, yt) ≤ −c log(
∑
j π(j)e(−ηl(xtj ,yt))) =

−c log(W t+1/W t).

Summing over t = 1 to n and using the fact that W 1 = d, we have

n∑
t=1

l(ŷt, yt) ≤ −c log(
Wn+1

W 1
)

= c log d− c log(

d∑
j=1

e−η
∑n
t=1 l(xtj ,yt))

≤ c log d− c log e−η
∑n
t=1 l(xtj ,yt)

= c log d+ cη

n∑
t=1

l(xtj , yt)

The second inequality follows since we are just lower bounding sum over j with one of the terms (all terms
are positive).


