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They may be distributed outside this class only with the permission of the Instructor.

In last lecture, we derived the Normalized Maximum Likelihood predictor that achieves minimax regret,
defined as

min
q

sup
p∈P

sup
xn1

[
log

1

q(xn1 )
− log

1

p(xn1 )

]
,

in the adversarial setting where the sequence xn1 can be arbitrary and we are competing against a collection
predictors in a class P = {pθ}θ∈Θ. However, it is not a sequential predictor.

Given this drawback of the Normalized Maximum Likelihood estimator, we introduced a Bayesian strategy
aka mixture approach, which is based on choosing q as convex combination (mixture) of all the possible source
distribution pθ for θ ∈ Θ.

In particular, given a prior π over Θ, we consider the mixture model

qπ(xn1 ) =

∫
Θ

π(θ)pθ(x
n
1 )dθ (14.1)

To make it sequential, we start with some initial prior π and our algorithm will update the model and prior
as we go as follows:

qπ(xi|xi−1
1 ) =

∫
Θ

pθ(xi|xi−1
1 )π(θ|xi−1

1 )dθ (14.2)

π(θ|xi−1
1 ) =

π(θ)pθ(x
i−1
1 )∫

Θ
π(θ′)pθ′(x

i−1
1 )dθ′

(14.3)

∝ π(θ) e
− log 1

pθ(x
i−1
1 ) (14.4)

This is referred to as the exponential weights update algorithm since the prior is scaled exponentially by the
loss on the data seen so far. It is a workhorse algorithm in online learning and we will see that it has good
regret as well as redundancy guarantees.

14.1 Regret guarantees for Exponential weights algorithm

We now characterize the performance of the Exponential weights algorithm in the adversarial setting. We
focus on a finite class where the number of competing models |Θ| = d and ask if it is possible to achieve
constant regret (not scaling with n in this case). Notice that this would imply an average regret (i.e. when
divided by n) of O(1/n) which is the parametric rate.
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Theorem 14.1 For all θ ∈ Θ and any sequence xn1 the exponential weights algorithm with initial choice of
uniform prior π(θ) = 1/d satisfies

log
1

qπ(xn1 )
≤ log

1

pθ(xn1 )
+ log d

Thus, the regret is independent of n and scales only logarithmically with |Θ| = d.

Proof: To ease analysis, lets define W i =
∑
θ pθ(x

i−1
1 ) with W 1 = d and πi(θ) = π(θ|xi−1

1 ). We start by
observing that

log
1

qπ(xi|xi−1
1 )

= − log
∑
θ

πi(θ)pθ(xi|xi−1
1 )

= − log
∑
θ

π(θ)pθ(x
i−1
1 )pθ(xi|xi−1

1 )∑
θ′ π(θ′)pθ′(x

i−1
1 )

= − log
∑
θ

pθ(x
i
1)∑

θ′ pθ′(x
i−1
1 )

= − log
W i+1

W i

where the second last step follows using the initial choice of prior π(θ) = 1/d.

Now lets use this, to show the main result

log
1

qπ(xn1 )
=

n∑
i=1

log
1

qπ(xi|xi−1
1 )

= −
n∑
i=1

log
W i+1

W i
= − log

Wn+1

W 1

= log d− log
∑
θ

pθ(x
n
1 )

≤ − log pθ(x
n
1 ) + log d = log

1

pθ(xn1 )
+ log d

where the last inequality follows by lower bounding the sum by any one of the terms since all terms are
positive.

For countably infinite class of models Θ, the log d will be replaced by log 1/π(θ) and you have for all sequences
xn1

log
1

qπ(xn1 )
≤ inf

θ∈Θ
log

1

pθ(xn1 )
+ log

1

π(θ)
.

Notice that this bound represents a tradeoff akin to bias-variance tradeoff as we have seen before, and the
estimator is akin to a regularized estimator with regularizer log 1/prior which is the Shannon information
content of model θ. In next class, we will extend this to general loss functions. And in homework, you will
analyze a countably infinite class of models Θ for general bounded loss functions.

14.2 Minimax and Bayesian Redundancy

We now turn to the average setting where the sequence xn1 is randomly drawn from a distribution p, and we
care about minimax redundancy defined as

min
q

sup
p∈P

Exn1∼p
[
log

1

q(xn1 )
− log

1

p(xn1 )

]
= min

q
sup
p∈P

D(pn||qn),
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over a class of distributions P = {pθ}θ∈Θ. Here pn, qn are used to indicate that the KL divergence is
computed over a random sequence xn1 . We will link the minimax redundancy to the Bayesian redundancy
that we define next.

Suppose we knew that the parameter θ was drawn from some known prior π. The data X = xn1 is then
drawn from pθ. Then we can also define the Bayesian redundancy of model q as

Eθ∼πD(pθ||q) =

∫
D(pθ||q)π(θ)dθ. (14.5)

The mixture model qπ is the Bayes optimal predictor, i.e. the Bayesian redundancy of the mixture model
qπ is the minimum Bayesian redundancy under prior π, i.e.

Eθ∼πD(pθ||qπ) = inf
q
Eθ∼πD(pθ||q). (14.6)

To see this, notice that for any distribution q

Eθ∼πD(pθ||qπ) =

∫
θ

π(θ)

∫
x

pθ(x) log
pθ(x)

qπ(x)
dxdθ (14.7)

=

∫
θ

π(θ)

∫
x

pθ(x)[log
pθ(x)

q(x)
+ log

q(x)

qπ(x)
]dxdθ (14.8)

=

∫
θ

π(θ)D(pθ||q)dθ +

∫
x

[

∫
θ

π(θ)pθ(x)dθ] log
q(x)

qπ(x)
dx (14.9)

=

∫
π(θ)D(pθ||q)dθ −D(qπ||q) ≤

∫
π(θ)D(pθ||q)dθ = Eθ∼πD(pθ||q). (14.10)

14.3 Redundancy Capacity Duality

We will now show that the Bayesian redundancy of the mixture model qπ over the worst possible prior π is
the same as the minimax redundancy, and these are also the same as the capacity of a channel connecting
the parameter θ to the data xn1 . This is the redundancy-capacity theorem.

We haven’t defined channel capacity yet, so we first give its definition. Consider the channel

θ → Channel→ xn1

The distribution characterizing the output X = xn1 of this channel for a given input θ is pθ(X). The mutual
information between the input and output of the channel is I(θ;X). If the input θ is distributed according
to a prior π, then we define the capacity as the maximum mutual information that can be coupled between
the input and output using best possible choice of input distribution π, i.e.

C = sup
π(θ)

I(θ;X)

Theorem 14.2 (Redundancy Capacity Theorem) Let X be a random variable 1, taking finite number
of values. Let Θ be a measurable space. Then,

sup
π

inf
q
Eθ∼πD(pθ||q) = sup

π
I(θ;X) = inf

q
sup
θ
D(pθ||q) (14.11)

Moreover, if the infimum on the right is uniquely achieved by some distribution q∗ and if π∗ achieves the
supremum on the left, then q∗ =

∫
π∗(θ)pθ = qπ

∗
.

1You may think of X as a sequence xn
1 .
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Proof: Our goal is to show:
(1) supπ I(θ;X) = supπ infq Eθ∼πD(pθ||q)
(2) supπ I(θ;X) = infq supθD(pθ||q)

To show (1), we first show that the Bayesian redundancy is essentially the mutual information between the
parameter θ and the data X. To see this, note that the joint distribution of θ,X is π(θ)pθ(X), the marginal
distribution of X is then

∫
π(θ)pθ(X)dθ = qπ(X) and hence

I(θ;X) = D(π(θ)pθ(X)||π(θ)qπ(X)) =

∫
π(θ)pθ(X) log

π(θ)pθ(X)

π(θ)qπ(X)
dθ

=

∫
π(θ)D(pθ||qπ)dθ = Eθ∼πD(pθ||q)

= inf
q
Eθ∼πD(pθ||q)

The last step follows using Eq. 14.6. So we have (1)

sup
π
I(θ;X) = sup

π
inf
q
Eθ∼πD(pθ||q) (14.12)

For (2), lets first show one direction. Bounding average by max we have for all π and q

Eθ∼πD(pθ||q) ≤ sup
θ
D(pθ||q)

Therefore, for all π and q
inf
q
Eθ∼πD(pθ||q) ≤ sup

θ
D(pθ||q)

Hence, for all π
inf
q
Eθ∼πD(pθ||q) ≤ inf

q
sup
θ
D(pθ||q)

So we get
sup
π
I(θ,X) = sup

π
inf
q
Eθ∼πD(pθ||q) ≤ inf

q
sup
θ
D(pθ||q).

Now we need to show
inf
q

sup
θ
D(pθ||q) ≤ C = sup

π
I(θ;X). (14.13)

Lets consider a q as follows: qπ
∗

=
∫
π∗(θ)pθ where π∗ achieves supremum in definition of C. We will show

that
D(pθ||qπ

∗
) ≤ C, ∀θ ∈ Θ (14.14)

By contradiction: assume ∃θ such that this fails, call it θ∗. I.e. D(pθ∗ ||qπ
∗
) > C. Define a new prior and

corresponding mixture
πλ = (1− λ)π∗ + λδθ∗ , q

π∗,λ = (1− λ)qπ
∗

+ λpθ∗ (14.15)

where λ ∈ [0, 1], that generated the data. We will now consider mutual information under this new prior and
mixture model Iπλ(θ;X), and argue that, under the contradiction, the gradient of the mutual information
is positive at λ = 0 and hence π∗ does not achieve supremum in definition of C.

We have
Hπλ(X|θ) = (1− λ)Hπ∗(X|θ) + λH(X|θ∗) (14.16)

Hence,

Iπλ(θ;X) = Hπλ(X)−Hπλ(X|θ) (14.17)

= H((1− λ)qπ
∗

+ λpθ∗)− (1− λ)Hπ∗(X|θ)− λH(X|θ∗) (14.18)
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Now take the derivative with respect to λ

∂

∂λ
H((1− λ)qπ

∗
+ λpθ∗) = −

∑
(pθ∗(x)− qπ

∗
(x)) log((1− λ)qπ

∗
(x) + λpθ∗(x)) (14.19)

and

∂

∂λ
Iπλ(θ;X)

∣∣∣∣
λ=0

= −
∫
pθ∗(x) log qπ

∗
(x) +

∫
qπ
∗
(x) log qπ

∗
(x) +Hπ∗(X|θ)−H(X|θ∗) (14.20)

= D(pθ∗ ||qπ
∗
) +H(p∗θ)−H(qπ

∗
) +Hπ∗(X|θ)−H(X|θ∗) (14.21)

= D(pθ∗ ||qπ
∗
)− C (14.22)

The last step follows by noticing that H(X|θ∗) = H(pθ∗) and H(qπ
∗
)−Hπ∗(X|θ) = C.

So if D(pθ∗ ||qπ
∗
) > C, then π∗ does not achieve the capacity since the gradient is not zero. Uniqueness

follows since mutual information is strictly convex in qπ.

Remark 1: Notice that in the setting when Θ is finite, the capacity of the channel is C ≤ log |Θ| and hence
the minimax optimal redundancy is ≤ log |Θ|.

Remark 2: While the redundancy-capacity theorem shows interesting connections between worst-case Bayesian
redundancy, capacity of channel relating input parameter to data, and minimax redundancy, often it is not
easy to determine the worst-case prior and quantify the minimax redundancy. We will revisit this in a few
lectures.


