
10-704: Information Processing and Learning Fall 2016

Lecture 13: Oct 12
Lecturer: Aarti Singh

Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy
of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

13.0.1 Application of Complexity Penalized ERM to Markov chains

Lets consider an example of density estimation now. We consider learning the parameters of a Markov chain
or order m. Recall that the distribution of a m−order Markov chain factorizes as follows:

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|Xi−1, . . . , Xi−m)

where we assume that the terms with negative indicies are omitted from conditioning.

How to encode a Markov chain? If the order m of the Markov chain is known, then encoding the Markov
chain is simply encoding its parameters. Lets consider discrete-variable Markov chains where each variable
Xi takes values in some alphabet X of size |X |, e.g. for binary random variables X = 0, 1 and |X | = 2. Also,
lets consider stationary Markov chains, i.e. the distribution of p(Xi|Xi−1, . . . , Xi−m) is same for all i. How
many parameters are there in a mth-order stationary Markov chain defined on |X | alphabet size?

Lets start by arguing this for a 0th-order chain - notice that the zero-th order Markov chain simply corre-
sponds to i.i.d. sampling. In this case, there are |X | − 1 parameters, corresponding to the probability of
any variable Xi taking values x ∈ X , minus one since the probabilities need to sum to one. For a 1st-order
Markov chain, we need to investigate the size of probability table for p(Xi|Xi−1). Thus, the number of
parameters is |X |(|X | − 1) since the conditioning variable can take |X | values and for each value that condi-
tioning variable takes, Xi takes |X | values but the corresponding probabilities for those assignments need to
sum to 1. More generally, for a mth-order Markov chain, there are |X |m(|X | − 1) = O(|X |m+1) parameters
since we need to condition on m variables. 1

Since each parameter is a probability value, we need to quantize it to be able to encode it. Again, as
for the previous example, it suffices to quantize the parameters to accuracy of 1/

√
n, i.e. restrict the

parameters (probabilities) take values in [1/(2
√
n), 3/(2

√
n), . . . , 1−1/(2

√
n)]. See Figure 13.1. The number

of possible values each quantized parameter can take is
√
n and the total possible values we need to encode

is (
√
n)O(|X |m+1). A simple way to encode these parameters is using O((|X |m+1 log2 n) bits.

Thus, the complexity penalized Markov-chain estimator is given as:

f̂ = arg min
f∈F
{R̂(f) +

c(f) + ln(1/δ)

n
}

1To be precise, we also need to count the initial probabilities, e.g. p(X0 = x) for x ∈ X for a first-order Markov chain which
can be different than the transition probabilities p(Xi|Xi−1), but that does not change the order of the number of parameters
which is still O(|X |m+1).

13-1

13-2 Lecture 13: Oct 12

ϭ" |Χ|""""..."
symbols"

probabili5es"

1/n"

1"

1/√n

Figure 13.1: An example of quantized probabilities for 0th-order Markov chain, into accuracy of 1√
n

where F is the class of all ordermMarkov chain distributions with quantized parameters, R̂(f) = − log f(X1, . . . , Xn)
and c(f) is the prefix codelength for f . We can also bound its expected excess risk:

E[R(f̂)]−R∗ ≤ min
f∈F

{
R(f)−R∗ +

c(f) + ln(1/δ)

n

}
+ δ

≤ min
f∈F

{
Dn(f∗||f) +

O((|X |m+1 log2 n) + ln(1/δ)

n

}
+ δ

where Dn(f∗||f) = Ef∗ [log f∗(X1, . . . , Xn)/f(X1, . . . , Xn)].

It can be shown that if the true data-generating distribution f∗ is indeed a Markov chain of order m, then
Dn(f∗||f) = O(1/n) and hence the complexity penalized approach achieves the parametric rate of error
convergence O(no. of parameters/n) up to log factors.

Take away message: ERM is good enough if all models in the class are equally complex or equally likely
apriori, e.g., histograms of fixed resolution, Markov chains of fixed order, etc. In this case, a simple encoding
using log |F| bits per model works, and Complexity penalized ERM reduces to regular ERM.

However, if the models have different complexities which is typically the case when doing model selection, e.g.
decision trees, wavelets, histograms of different resolutions, markov chains of unknown order, etc., then we
should do complexity penalized ERM using prefix codes that are longer for more complex models (decision
trees with lots of leaves, wavelet estimators with lots of non-zero coefficients, histograms of fine resolution,
markov chains of large order) and shorter for simpler models.

13.1 Minimum Description Length Principle and Model selection

The Minimum Description Length (MDL) Principle states that the best description of the data is given by
the model which compresses it the best. Thus, modeling is equivalent to capturing regularity in the data
which is equivalent to compressing it. More we can compress the data, more we learn from it and better we
are at predicting it.

Thus, MDL suggests picking the probability model that describes the data using the shortest codelength.
However, one needs to be careful in interpreting it. When using MDL for model selection (the true model
is unknown and we are seeking best representation from models within a class), it implies that the overall
codelength needed to describe the data using a model as well as to describe a model within the class should
be as small as possible. This can be achieved by a two-stage MDL procedure which connects with the
complexity penalized ERM approach.

Lecture 13: Oct 12 13-3

Two-stage MDL uses a prefix coding scheme where we 1) we encode the data given a model and 2) encode
the model, and the overall code is a concatenation of the two prefix codes (which is itself a prefix code).
Thus, the overall codelength is the sum of the codelength needed to encode the data given a model plus the
codelength needed to encode the model. This suggests solving the following minimization:

f̂ = arg min
f∈F
{Lf (X1, . . . , Xn) + c(f)} (13.1)

A natural choice of Lf (X1, . . . , Xn) = log 1/f(X1, . . . , Xn), the Shannon information content when using
model f to represent data X1, . . . , Xn. This is precisely the complexity-penalized likelihood loss.

13.2 Universal and Sequential Prediction and Coding

In universal prediction and coding, the source distribution is not known. The goal in universal prediction is
to find a q that has D(p||q) small for all p ∈ P. Such a coding distribution would be universal for P. The
complexity penalized ERM predictors we considered were shown to yield low error for an entire class P e.g.
class of Lipschitz functions or decision boundaries. We aim for such results in two scenarios - the adversarial
case and an average case, as we discuss next.

Additionally, we would like to consider prediction and coding strategies that are sequential, i.e. they can
predict or code on the fly using data seen up to that time, instead of having to wait to see all n data points.
We focus on prediction first, i.e. coming up with models of the form p(xi|xi−1

1) where xi−1
1 = xi−1, . . . , x1.

This is going to be our focus going forward.

13.2.1 Adversarial Case

Given a sequence xn1 ∈ Xn, we define the regret of using distribution q over p. Notice that in the adversarial
case, we do not assume that xn1 is generated according to p. Instead we think of picking a model q that does
as well as a candidate model p.

Regn(q, p) := sup
xn1

log
1

q(xn1)
− log

1

p(xn1)
= sup

xn1

n∑
i=1

log
1

q(xi|xi−1
1)

− log
1

p(xi|xi−1
1)

(13.2)

We care about the worst-case regret with respect to a class of P:

Regn(q,P) := sup
p∈P

Regn(q, p) (13.3)

13.2.2 Redundancy minimization

Here is a less adversarial case where we assume data xn1 is generated according to p. We define the redundancy
which is the expected regret under p.

Redn(q, p) := Exn1∼p
[

log
1

q(xn1)
− log

1

p(xn1)

]
= D(p||q) (13.4)

The worst-case redundancy with respect to a class P is

Redn(q,P) := sup
p∈P

Redn(q, p) (13.5)

This average setting was the focus in our previous analysis when we considered negative log likelihood loss
and redundancy is simply the excess risk of model q under the negative log likelihood loss.

13-4 Lecture 13: Oct 12

13.3 Minimax Strategies for Regret

There are two questions here.

• How low regret can we hope for?

• How do we achieve this low regret?

Let’s define the complexity of set Θ.

Compn(Θ) := log

∫
Xn

sup
θ∈Θ

pθ(x
n
1)dµ(xn1) (13.6)

where µ is some base measure on Xn. Note that we may have Compn(Θ) = +∞. It turns out that the
complexity equals to the minimax regret in adversarial setting.

Theorem 13.1 The minimax regret for P = {pθ}, θ ∈ Θ

inf
Q
Regn(q,P) = Compn(Θ) (13.7)

And if Compn(Θ) < +∞, then the normalized maximum likelihood estimator (as known as Shtarkov distri-
bution) q, defined with density

q(xn1) =
supθ∈Θ pθ(x

n
1)∫

supθ∈Θ pθ(x
n
1)dxn1

(13.8)

is uniquely minimax optimal.

Notice that the normalized maximum likelihood estimator, for each given sequence, simply assigns the
probability proportional to the probability given by the candidate model with highest likelihood. However,
a normalization is needed to make sure such an assignment is a valid probability distribution.

Proof: Assume Compn(Θ) < +∞. The normalized maximum likelihood distribution q has constant regret:

Regn(q,P) = sup
xn1∈X

[
log

1

q(xn1)
− log

1

supθ pθ(x
n
1)

]
(13.9)

= sup
xn1∈X

[
log

∫
supθ∈Θ pθ(x

n
1)dxn1

supθ∈Θ pθ(x
n
1)

− log
1

supθ pθ(x
n
1)

]
(13.10)

= Compn(Θ) (13.11)

Moreover, for any distribution Q on Xn, we have

Regn(q,P) ≥
∫ [

log
1

q(xn1)
− log

1

supθ pθ(x
n
1)

]
q(xn1)dµ(xn1) (13.12)

=

∫ [
log

q(xn1)

q(xn1)
+ Compn(Θ)

]
q(xn1)dxn1 (13.13)

= D(q||q) + Compn(Θ) (13.14)

The first inequality follows by simply lower bounding supxn1 with Exn1∼q̄. The result follows by Gibbs inequal-
ity which states that KL divergence is positive unless q = q̄ and hence any other q is strictly suboptimal.

Remarks 13.2

• Note that the normalized likelihood distribution is not a sequential predictor, since we must know the
entire sequence to compute q(xn1).

Lecture 13: Oct 12 13-5

13.4 Mixture (Bayesian) Strategies

Given the drawback of the Normalized Maximum Likelihood estimator which is minimax optimal for regret,
we consider alternate estimators. In particular, we consider a mixture approach, which is based on choosing
q as convex combination (mixture) of all the possible source distribution pθ for θ ∈ Θ.

In particular, given a prior π over Θ, we consider the mixture model

qπ(xn1) =

∫
Θ

π(θ)pθ(x
n
1)dθ (13.15)

To make it sequential, we start with some initial prior π and our algorithm will update the model and prior
as we go as follows:

qπ(xi|xi−1
1) =

∫
Θ

pθ(xi|xi−1
1)π(θ|xi−1

1)dθ (13.16)

π(θ|xi−1
1) =

π(θ)pθ(x
i−1
1)∫

Θ
π(θ′)pθ′(x

i−1
1)dθ′

(13.17)

∝ π(θ)e
− log 1

pθ(x
i−1
1) (13.18)

This is referred to as the exponential weights update algorithm. It is a workhorse algorithm in online learning
and we will see that it has good regret as well as redundancy guarantees.

