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12.1 Review

Complexity Penalized ERM aka Structural Risk Minimization via prefix codes

Last time, we talked about Complexity Penalized ERM via prefix codes for loss functions that are bounded.
This includes classification under 0-1 loss. For bounded loss functions, the complexity penalized ERM
predictor is given as follows:

f̂ = arg min
f∈F

{
R̂(f) +

√
c(f) + ln(2/δ)

2n

}

where R̂(f) = 1
n

∑n
i=1 loss(f(Xi), Yi)) for n i.i.d. samples {Xi, Yi}ni=1, c(f) is the prefix codelength for

encoding the predictor f and δ ∈ (0, 1) is a confidence parameter. For binary classification, for example, the
0/1 loss is loss(f(Xi), Yi) = 1f(Xi) 6=Yi

. We also showed the following bound on the expected excess risk for
the complexity penalized ERM predictor:

E[R(f̂)]−R∗ ≤ min
f∈F

{
R(f)−R∗ +

√
c(f) + ln(1/δ)

2n

}
+ δ

for all δ ∈ (0, 1) where R∗ is the Bayes optimal risk (i.e. risk of the best possible predictor not restricted to
be in F). The first two terms can be regarded as approximation error (bias) and the third term as estimation
error (variance). Thus, complexity penalized ERM automatically does model selection, i.e. picks a predictor
with performance comparable to the one in the class F that balances approximation and estimation errors.
On the other hand, simply doing ERM is prone to over-fitting, i.e. it will pick an overly complex predictor
with small empirical risk but large codelength, resulting in small approximation error (since a complex
predictor can better approximate a function not in the class) but large estimation error.

Application to Classification

We also studied two examples of complexity penalized ERM via prefix codes - histogram and dyadic decision
tree classifiers. We derived prefix codes for them and studied approximation properties for Lipschitz class of
boundaries, demonstrating rates of convergence which indicate that decision trees can outperform histogram
classifiers when the boundary is well-behaved.
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12.2 Complexity Penalized ERM for Regression and Density Es-
timation

To derive performance bounds on complexity penalized ERM predictors under bounded losses, we had used
Hoeffding’s concentration inequality to control the deviation of true and empirical risk. For unbounded loss
functions, we can use other concentration inequalities such as Craig-Bernstein inequality which under some
moment conditions on the variables imply a tighter control on the deviation of true and empirical risk: With
probability ≥ 1− δ, for all f ∈ F

R(f) ≤ R̂(f) +
c(f) + ln(1δ)

n
Notice the absence of square-root on the deviation bound. The complexity penalized ERM aka Structural
Risk Minimization (SRM) rule is given as

f̂ = arg min
f∈F

{
R̂(f) +

c(f) + ln(1/δ)

n

}
and its expected excess risk can be bounded as follows:

E[R(f̂)]−R∗ ≤ min
f∈F

{
R(f)−R∗ +

c(f) + ln(1/δ)

n

}
+ δ

For a derivation, see for example http://nowak.ece.wisc.edu/SLT09/lecture12.pdf.

Examples of unbounded loss functions arise in Regression/de-noising where the squared loss loss(f(Xi), Yi) =
(f(Xi) − Yi)2 is used, and density estimation where negative log likelihood loss loss(f(Xi)) = − log f(Xi)
is used. Lets consider application of these bounds to histogram regression, wavelet denoising and density
estimation under a Markov chain model.

All these are examples of (uncountable) infinite classes of models since the parameters in these models can
take on any real value (for example, in histogram regression, instead of a binary label, a model assigns a
real value to each bin). To enable encoding of such models, we need to consider a finite or countably infinite
subset of models F̄ ⊂ F that cover the original class of models F . One way to get such a class is quantization,
where the real parameters are quantized to a discrete collection of values. Notice that we can still get an
error bound (since F̄ ⊂ F and hence minimization over F̄ upper bounds the error bound given above)

E[R(f̂)]−R∗ ≤ min
f∈F̄

{
R(f)−R∗ +

c(f) + ln(1/δ)

n

}
+ δ

that is usually not too worse if the quantization is fine enough and shrinking to 0 as n→∞.

12.2.1 Application to Histogram regression

Let Fm denote the class of histogram regressors with m bins. We will consider models where the values in
each bin are bounded between [−M,M ]. Let F̄m denote the class of histogram regressors where the value
in each of the m bins is quantized to an accuracy of 2M/∆. Hence, the number of possible values for each
bin in a quantized model is ∆, resulting in total |F̄m| = ∆m quantized histogram regressors.

To encode ∆m different classifiers, we need log ∆m = O(m) bits using uniform coding - notice that this
is a prefix code. In addition, we need to encode the integer m denoting the histogram resolution, which
needs logm bits. Appending these bits to the uniform code still leads to a prefix code. Therefore, we need
c(f) = O(m) bits to encode f ∈ F̄m. 1 We will consider the countably infinite class F̄ = ∪mF̄m.

1Though a better code can result in tighter bounds, such an encoding is rate optimal (gets best possible dependence of error
on number of samples) and we will only care about right order of number of bits and resulting error.

http://nowak.ece.wisc.edu/SLT09/lecture12.pdf
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Plugging this in the earlier expression, we have the complexity penalized ERM or SRM predictor.

f̂ = arg min
f∈F̄

{
R̂(f) +

O(m) + log 1
δ

n

}
= arg min

m

{
min
f∈F̄m

R̂(f) +
O(m) + log 1

δ

n

}
(12.1)

The error bound is

E[R(f̂)]−R∗ ≤ min
m
{ min
f∈F̄m

R(f)−R∗ +
O(m) + log 1

δ

n
}+ δ (12.2)

Thus, the complexity penalized procedure also performs model selection (pick the best m) for histogram
regressors automatically.

We can derive the rate of error convergence for functions that are Lipschitz i.e. |f∗(x)− f∗(x′)| ≤ L‖x−x′‖
2. To characterize the approximation error minf∈F̄m

R(f)−R∗ for this class, let f̄ = arg minf∈F̄m
R(f) and

f = arg minf∈Fm R(f). Also notice that R(f̄) − R∗ = E[(f̄(X) − f∗(X)2)] ≤ E[(|f̄(X) − f(X)| + |f(X) −
f∗(X)|)2] ≤ E[(M/∆ + |f(X)− f∗(X)|)2]. The best unquantized histogram f of resolution m is a constant
in each bin while f∗ is Lipschitz, hence |f(x)− f∗(x)| = O(1/m1/d) since the volume of a between any two
points in a bin is O(1/m1/d). Thus, we get that

R(f̄)−R∗ = O

((
1

∆
+

1

m1/d

)2
)

and

E[R(f̂)]−R∗ = min
m

O

((
1

∆
+

1

m1/d

)2

+
m

n

)
= O

(
1/∆2 + n−2/(d+2)

)
since the optimal m = Θ(nd/(d+2). In fact, n−2/(d+2) is the best possible rate of mean square error conver-
gence for any estimator (we will see how to derive such lower bounds later in the course), and hence the
histogram regressor is optimal assuming the quantization level ∆ is set to satisfy Ω(n1/(d+2)).

12.2.2 Application to Wavelet de-noising

Another approach to perform regression is via basis expansion, e.g. the models can be given by a linear
combination of fourier basis functions or wavelet basis functions. Fourier basis provides a good approximation
for smooth functions. Wavelets basis is good for representing inhomogeneous functions such as piece-wise
smooth functions or functions supported locally on a small part of the domain. For example, the Haar
wavelet basis (shown below) provides a good approximation for piece-wise constant functions.

A wavelet basis consists of orthonormal basis functions indexed by a scale parameter ` ∈ {0, 1, . . . } and a
location parameter k ∈ {1, 2, . . . , 2`}. For example, there is only one location at scale ` = 0 and a single basis
element which is supported on the entire domain and for Haar basis is a positive value on one half of the
domain and a negative value on the other half. The next scale corresponding to ` = 1 has two basis elements
at locations k = 1, 2 that consist of the first element shrunk by half and supported on first half (positive on
first quarter and negative on second quarter for Haar basis) and second half of the domain (positive on third
quarter and negative on fourth quarter for Haar basis). And so on.

We represent a function in the wavelet basis as follows:

f(x) =
∑
`≥0

2`∑
k=1

a`kφ`k(x) + c0

2Notice that unlike classification where the boundary was Lipschitz, here we are modeling the regression function f∗ as
Lipschitz.



12-4 Lecture 12: Oct 10

Figure 12.1: A haar wavelet basis element, φ`k(x)

where φjk is the wavelet basis element at scale ` and location k. Notice that the Haar wavelet basis is
orthonormal, i.e.

∫
φ(x)φ′(x)dx = 0 unless φ(x) = φ′(x) in which case

∫
φ2(x)dx = 1. Also, orthonormality

implies that we have a`k =
∫
f(x)φ`k(x)dx =< f, φ`k >.

Wavelet basis elements satisfy certain additional constraints called vanishing moments. For example, the
Haar wavelet basis satisfies

∫
φ`k(x)dx = 0. More generally, a sth-order wavelet basis satisfies

∫
xrφ`k(x)dx =

0 for all r ≤ s and is said to possess s vanishing moments. A nice consequence of this property is that if the
function f is smooth over the support of φ`k, say is it constant for haar basis or looks like xr for higher-order
basis, then the corresponding coefficient a`k = 0. Thus, wavelet basis provides a sparse representation for
functions that are inhomogeneous. For example, the only non-zero coefficients in the Haar wavelet basis for
a piece-wise constant function are the ones whose basis elements are supported over discontinuities of the
function.

Typically, the function f is only evaluated at n samples and in this case, only wavelet basis up to resolution
` = log2 n− 1 suffice i.e. n basis elements and their corresponding coefficients.

Choosing a wavelet estimator for data {Xi, Yi}ni=1 correspond to picking a function (model) f expressed in
terms of its wavelet basis expansion. We can pick a good model from this class by using complexity penalized
ERM:

f̂ = arg min
f∈F
{R̂(f) +

c(f) + ln(1/δ)

n
}

where R̂(f) = 1
n

∑n
i=1(Yi − f(Xi))

2 and c(f) is the length of a prefix code for f .

How can we encode a wavelet estimator f? Notice that encoding f is equivalent to encoding the
non-zero coefficients - their scale, location and the value. For each non-zero coefficient, there are n possible
combinations of scale, location (since there are n samples) and hence that can be encoded simply with log2 n
bits. The value of each coefficient can be any real (but bounded) number and representing this perfectly could
require infinite bits, but again since we have only n samples, it suffices to quantize the wavelet coefficients and
encode them. Specifically, we consider the class F where the functions f have wavelet representations with
coefficients quantized to an accuracy of 2M/

√
n if the original coefficients are bounded between [−M,M ]

where M is some constant. Then a coefficient can be encoded with log2(
√
n) = 1

2 log2 n bits. By doing
this, we lose a little bit (order 1/n in the approximation error, which is best possible accuracy one can hope
for anyways) but gain a lot in the estimation error (since we can encode functions in F using few bits).
Therefore,

c(f) =
3

2
log2 n× number of non-zero coeffs.

If we let a is a column vector containing the coefficients and c0, then c(f) = 3
2‖a‖0 log2 n. The estimated
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coefficients are given as:

â = arg min
a∈A
{‖Y − Φ(X)a‖2 +

3

2
‖a‖0 log2 n}

whereA = [−M+M/
√
n,−M+3M/

√
n, ...,M−M/

√
n] is the set of quantized coefficients, Y = [Y1, Y2, . . . , Yn],

and Φ(X) = [Φ(X1); Φ(X2); . . . ; Φ(Xn)] is an n× n matrix containing the n basis functions sampled at uni-
formly spaced points X1, . . . , Xn. It can be shown that the solution â can be written in closed form as a
hard-thresholding estimate and hence is easy to compute, i.e. if Y = Φ(X)b, then

âj = bj · 1
(
|bj | ≥

√
1.5 log2 n

)
where 1(S) = 1 if S is true and 0 otherwise. To see this, notice that ‖Y −Φ(X)a‖2 = ‖Φ(X)b−Φ(X)a‖2 =
‖b− a‖2 since orthonormality of basis functions implies Φ(X)>Φ(X) = I. Now, notice that the solution to
arg mina∈A {‖b − a‖2 + 3

2‖a‖0 log2 n} can only be aj = bj (in which case error contribution is 3
2 log2 n) or

aj = 0 (in which case error contribution is b2i ). Therefore, the optimal âj = bj · 1
(
|bj | ≥

√
3
2 log2 n

)
.

Thus, a wavelet estimator is often referred to as a ”non-linear” estimator since the basis elements used in the
representation are the ones with largest coefficients and not simply the first few basis elements as is typical.

We can also bound the expected excess risk of the complexity penalized wavelet estimator.

E[R(f̂)]−R∗ ≤ min
f∈F

{
R(f)−R∗ +

c(f) + ln(1/δ)

n

}
+ δ

≤ min
f∈F

{
R(f)−R∗ +

c(f) + ln(1/δ)

n

}
+ δ

Second inequality follows since F ⊂ F . If the true underlying function f∗ has d discontinuities and we are
using a Haar wavelet basis, then the estimation error behaves like (‖a‖0 log2 n)/n = O((d log2

2 n)/n) since
every discontinuity results in no more than log2 n non-zero coefficients (all basis elements with supports that
include the point of discontinuity). Notice that R(f)−R∗ = E[(f(X)− f∗(X))2] and hence it can be shown
that the approximation error behaves like O(d/n) since the best wavelet estimator is quantized to 1/

√
n in

coefficient value and to 1/n spatially (i.e. in the d regions of discontinuity, each of size 1/n, the error is O(1),
and elsewhere the squared error is 1/n). Thus, the overall mean square error behaves like O((d log2

2 n)/n),
which is the parametric rate of error convergence O(no. of parameters/n) up to log factors.
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