
10-704 Information Processing and Learning Fall 2016

Homework 2
Due: Friday, October 28, 2016

Notes: For positive integers k, [k] := {1, . . . , k} denotes the set of the first k positive integers.
When X ∼ p and Y ∼ q are random variables over the same sample space, D(X||Y ), D(X||q), and
D(p||Y ) should all be read as D(p||q). The homework is out of 75 points – 5 points per part.

1. Maximum Entropy of Independent Bernoulli Sums

In this problem, we will show that the binomial and (optionally) Poisson distributions are
maximum entropy (MaxEnt) distributions over an appropriate class P of distributions, and
derive several useful properties of KL divergence along the way.

For any positive integer n and p ∈ [0, 1], let Binomial(n, p) denote the binomial distribution
(the sum of n IID Bernoulli events of probability p), which has density function

Binomialn,p(k) =

(
n

k

)
pk(1− p)1−k.

For λ ≥ 0, let Π(λ) denote the mean-λ Poisson distribution, which has density function

Poissonλ(k) =
λk

k!
e−λ, ∀k ∈ N ∪ {0}.

The class Pλ of distributions is that of sums Sn :=
∑n

i=1Xi of n independent (but not
necessarily identically distributed) binary variables {Xi}ni=1 constrained such that E [Sn] = λ,
for some λ ∈ [0, n]. Note that any p ∈ Pλ can be parametrized by (p1, . . . , pn) ∈ [0, 1]n,
with

∑n
i=1 pi = λ. We will show that the Binomial case p1 = · · · = pn = λ

n is the MaxEnt
distribution over Pλ, and that the Poisson distribution is the limit as n→∞.

(a) Derive the maximum likelihood estimate of λ under the assumption that you observe n
IID samples X1, . . . , Xn from a Poisson distribution.

(b) Define D(X) := minλ≥0D(X||Π(λ)). Derive a closed form for D(X) in terms of X. 1

(c) Show that the KL divergence D(p||q) is convex in p.

(d) Let

Pλ(p3, . . . , pn) = {q ∈ Pλ : q3 = p3, . . . , qn = pn, }

=

{
(x1, x2, p3, . . . , pn) : x1 + x2 = λ−

n∑
i=3

pi

}
denote the subspace of Pλ with all but two coordinates fixed. Show that H(Sn) is
strictly concave on Pλ(p3, . . . , pn). (Hint: Use parts (b) and (c) to reduce this to showing
E [log(Sn!)] is strictly concave on Pλ(p3, . . . , pn). Then, since

E [log(Sn!)] = E [E [log(Sn!)|X3, . . . , Xn]] ,

1X may have any distribution over {0, 1, 2 . . . }, but you may assume any necessary functionals of X are finite.
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which is a linear functional of E [log(Sn!)|X3, . . . , Xn], show that E [log(Sn!)|X3, . . . , Xn]
is strictly concave on Pλ(p3, . . . , pn), for any values of X3, . . . , Xn.)

(e) Use part (d) to show that Binomial(n, λ/n) is the unique MaxEnt distribution over P.

(f) Given independent random variables X and Y taking values on N, show that

D(X + Y ) ≤ D(X) +D(Y ). (1)

(Hint: Use the General Data Processing Inequality from Homework 1 and the fact that
the sum of two Poisson-distributed variables with means λ1 and λ2 is itself Poisson-
distributed with mean λ1 + λ2.)

(g) Show that D
(
Binomial

(
n, λn

))
→ 0 as n→∞. This is (a fairly strong form of) the “Law

of Rare Events” (a.k.a. the “Poisson Limit Theorem”), which states that the frequency
of a large number of unlikely events is approximately Poisson-distributed and justifies
many applications of the Poisson distribution. (Hint: Show D(Xi) ≤ p2i and apply (1).)

(h) (This part is optional.) Show that H(Π(λ)) = limn→∞H(B(n, λ/n)). (Hint: Use
the equivalence

H(p) +D(p||q) = E
X∼p

[log q(x)] ,

discussed in Lecture 1. Note that one step of this proof requires switching a limit and
an infinite summation. If you are not familiar with the dominated convergence theorem,
you may wish to take this step for granted.)

2. Wavelet Denoising with CRM

In this problem, we will analyze the convergence rate of a wavelet-based denoising estimator.

Haar wavelets and quantization: Recall that Haar wavelets over X := [0, 1) are piecewise
constant functions ψj,k : X → {−2j/2, 0, 2j/2} such that

ψj,k(x) = 2j/2
(
1[k2−j ,(k+1/2)2−j) − 1[(k+1/2)2−j ,(k+1)2−j)

)
,

for all j ∈ N ∪ {0}, k ∈ {0, . . . , 2j − 1}, x ∈ X . Since Haar wavelets for a basis for L2(X ), for
any ` ∈ N ∪ {0}, if we define the projection

f` :=
∑̀
j=0

2j−1∑
k=0

〈ψj,k, f〉,

of f onto the first ` + 1 scales of the Haar basis, then f` → f as ` → ∞. To encode the
projection f`, we also need to quantize the coefficients. Quantized projections lie in the set

Q`,ε :=

∑̀
j=0

2j−1∑
k=0

aj,kψj,k ∈ L2(X ) : aj,k = 2bj,kε, for some integer bj,k

 ,

so that their wavelet coefficients are multiples of ε. Our quantized projection of f is then

f`,ε := argmin
g∈Q`,ε

‖f − g‖2.
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Thus, f`,ε is the best (in L2 distance) representation of f in terms of Haar wavelets of scale
at most ` and coefficient precision ε.

CRM Denoising: We will assume the true function f lies in the class Fs,M ⊆ L2(X ) of
piecewise constant functions with at most s discontinuities and bounded L∞ norm ‖f‖∞ =
supx∈X |f(x)| ≤ M . We observe n noisy IID pairs {(Xi, Yi)}ni=1, where each X1, . . . , Xn ∼
U(X ) is uniformly distributed and, for ε1, . . . , εn ∼ N (0, σ2), Yi = f(Xi) + εi.

For δ ∈ (0, 1), the complexity-penalized empirical risk minimizing (CRM) estimator 2 is

f̂`,ε,δ := argmin
g`,ε∈Q`,ε

[
‖g`,ε − f‖22 +

c(g`,ε)− ln δ

n

]
,

where c(g`,ε) denotes the number of bits required to encode g`,ε. In class, we derived the
following excess risk bound for CRM estimators:

R
(
f̂`,ε,δ

)
−R∗ = ‖f̂`,ε,δ − f‖22 ≤ inf

g

[
‖g`,ε − f‖22 +

c (g`,ε)− ln δ

n

]
+ δ. (2)

In this problem, we will analyze the terms of (2) to derive a convergence rate bound in terms
of the complexity s of f and the sample size n.

(a) Show that the projections f` and f`,ε can each have at most C0s`+1 nonzero coefficients,
for some constant C0.

(b) Bound the approximation errors ‖f − f`‖22 and ‖f − f`,ε‖22.
(c) How many bits c(f) are required to encode f`,ε (for known s, M , `, and ε)?

(d) By choosing ε > 0, ` ∈ N, and δ > 0 appropriately, use parts (b) and (c) with the
bound(2) show 3

‖f̂ − f‖22 ∈ O
(
s log2 n

n

)
.

Note that, up to log factors, this is a parametric rate with s parameters.

2Recall that f̂`,ε,δ can be easily computed by hard-thresholding.
3Here, treat M as a constant.
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3. Universal Prediction with Exponential Weights

Fix a (potentially infinite) countable class of predictors F . Recall that, in the universal
prediction setting, at each time point t ∈ {1, . . . , T} up to a predetermined time horizon
T , we see some data xt and choose a predictor f̂t ∈ F , before then seeing a true label

yt and suffering loss `
(
f̂t(xt), yt

)
∈ [0, 1]. Since we are allowing, for example, adversarial

sequences {(xt, yt)}Tt=1, a randomized algorithm is needed to provide any guarantees. Given
a learning rate η > 0 and prior π over F , the exponential weights algorithm proposes to draw
f̂t according to a distribution qt defined such that q1 = π and each

qt+1(f) ∝ qt(f) exp (−η` (f(xt), yt)) .

For each f ∈ F and t ∈ [T ], let

Lt(f) :=
t∑

τ=1

` (f(xτ ), yτ ) and Lt(f̂) :=
t∑

τ=1

`
(
f̂τ (xτ ), yτ

)
denote the cumulative losses of f and our predictions, respectively, at time t. Define

Wt = E
f∼π

[exp (−ηLt(f))] , ∀t ∈ {1, . . . , T} .

(a) Show that lnWT ≥ − inff∈F [ηLT (f)− log π(f)].

(b) Show that
Wt+1

Wt
= E

f∼qt+1

[exp (−η` (f(xt+1), yt+1))] .

(c) Use part (b) to show that

lnWT ≤ −η
T∑
t=1

E
f∼qt

[` (ft(xt), yt)] +
η2T

8
.

Hint: Recall Hoeffding’s Lemma: for a random variable X with X ∈ [a, b] a.s.,

lnE
[
esX
]
≤ sE [X] +

s2(b− a)2

8
.

(d) Use parts (a) and (c) and a convenient choice of η to bound the expected loss of the
exponential weights algorithm by

E
[
LT (f̂)

]
≤ inf

f∈F

[
LT (f) + (1− log π(f))

√
T

8

]
.

If F is finite, give a simple sufficient condition on the prior π such that the regret

E
[
LT (f̂)

]
− inf
f∈F

LT (f) ∈ O
(
T 1/2

)
.
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