
10-704 Information Processing and Learning Fall 2016

Homework 1
Due: Wednesday, September 28, 2016

Notes: For positive integers k, [k] := {1, . . . , k} denotes the set of the first k positive integers.
When X ∼ p and Y ∼ q are random variables over the same sample space, D(X||Y ), D(X||q), and
D(p||Y ) should all be read as D(p||q). The homework is out of 60 points.

1. Warm-up Problems

(a) (15 points) Two teams A and B play a best-of-five series that terminates as soon as one
of the teams wins three games. Let X be the random variable representing the outcome
of the series, written as a string of who won the individual games (e.g., possible values
of X are AAA, BAAA, ABABB, etc.) Let Y be the number of games played before the
series ends. Assuming that A and B are equally matched and the outcomes of different
games in the series are independent, calculate H(X), H(Y ), H(Y |X), H(X|Y ), and
I(X;Y ). Let pA and qA be the distributions of X and Y , respectively, given that A wins
the series. Calculate D(pA||X) and D(qA||Y ).

(b) (5 points) Suppose X, Y , and Z are each Bernoulli(1/2) and are pairwise independent
(i.e., I(X;Y ) = I(Y ;Z) = I(X;Z) = 0). What is the minimum possible value of
H(X,Y, Z)?

2. General Data Processing

(a) (10 points) Suppose we have two distributions p1 and p2 on [k], and, for each i ∈
[k], a conditional distribution qi over [`]. Let q1(j) =

∑k
i=1 qi(j)p1(i) and q2(j) =∑k

i=1 qi(j)p2(i) denote the marginal distributions over [`] induced by p1 and p2, respec-
tively. Prove the General Data Processing Inequality

D(q1||q2) ≤ D(p1||p2). (1)

Hint: Use the log-sum inequality, which states that, for all non-negative sequences
a1, . . . , an and b1, . . . , bn, letting a =

∑n
i=1 ai and b =

∑n
i=1 bi,

n∑
i=1

ai log
ai
bi
≥ a log

a

b
.

(b) As special cases of (1), show:

i. (5 points) For random variables X and Y taking values in [k] and function f with
domain [k],

D(f(X)||f(Y )) ≤ D(X||Y ) and H(f(X)) ≤ H(X).

ii. (5 points) The Data Processing Inequality from class: for a Markov chain X 7→
Y 7→ Z, I(X;Z) ≤ I(X;Y ).
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3. Plug-in estimator for differential entropy

This problem derives convergence rates for an estimator of the differential entropy H(p) =
−
∫
X p(x) log p(x) dx of a probability density p, given n IID samples X1, . . . , Xn ∼ p. To

simplify matters, we will make the following assumptions:

i) The sample space X = [0, 1]D is the D-dimensional unit cube.

ii) We know positive lower and upper bounds

0 < κ1 ≤ inf
x∈X

p(x) ≤ sup
x∈X

p(x) ≤ κ2 <∞

on the true density p.

The estimator in question is a plug-in estimator based on a truncated kernel density estimate
(KDE). Specifically, the estimate Ĥh is given by given by

Ĥh = H(p̂h) = −
∫
X
p̂h(x) log p̂h(x) dx, (2)

where, for some bandwidth h > 0 and kernel K : RD → R with
∫
RD K(u) du = 1,

p̂h(x) = min

{
κ2,max

{
κ1,

1

nhd

n∑
i=1

K

(
x−Xi

h

)}}
, (3)

is a truncated KDE of p.

You may take for granted the following facts about the integrated squared bias and variance
of the truncated KDE: 1 there exist constants C0, C1 > 0 such that, for all h > 0,∫

X
(E [p̂h(x)]− p(x))2 dx ≤ C0h

2β (4)

and ∫
X
V [p̂h(x)] dx ≤ C1

nhD
. (5)

Here, the “Hölder” parameter β > 0 is a measure of smoothness of the probability density p.
Larger β indicates smoother p, and hence less smoothing bias. The standard decomposition
of mean-squared error into bias and variance gives∫

X
E
[
(p̂h(x)− p(x))2

]
=

∫
X

(E [p̂h(x)]− p(x))2 + V [p̂h(x)] dx ≤ C0h
2β +

C1

nhD
.

Optimizing over h gives the rate h � n
− 1

2β+D and plugging this back in gives the integrated
MSE rate ∫

X
E
[
(p̂h(x)− p(x))2

]
� n−

2β
2β+D .

In this problem, we will derive similar bounds for the plug-in entropy estimator, and study
its optimal bandwidth and MSE.

1These results can be found in any text on nonparametric estimation, such as Tsybakov [2008], Section 1.2.
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(a) (5 points) Prove the bias bound∣∣∣E [Ĥh

]
−H

∣∣∣ ≤ CB (hβ + h2β +
1

nhD

)
,

for some CB depending only on C0, C1, κ1, κ2, and D. (Hint: Along with inequalities
(4) and (5), a second-order Taylor expansion and Jensen’s inequality may be useful.)

(b) (5 points) This part will use McDiarmid’s inequality:

Theorem 1. (McDiarmid’s Inequality): Suppose we have n independent random
variables X1, . . . , Xn taking values in a set Ω and a function f : Ω → R such that, for
some constants c1, . . . , cn,

sup
x1,...,xn,y∈Ω

|f(x1, . . . , xn)− f(x1, . . . , xi−1, y, xi+1, . . . , xn)| ≤ ci, for each i ∈ [n].

Then, McDiarmid’s inequality states that, for any ε > 0,

P [|f(X)− E [f(X)]| > ε] ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
.

Essentially, if a function depends on many independent random variables, but not too
much on any one of them, McDiarmid’s inequality tells us that the function’s distribution
is is tightly concentrated around its expectation.

Use McDiarmid’s inequality to derive the exponential concentration bound

P
[∣∣∣Ĥh − E

[
Ĥh

]∣∣∣ > ε
]
≤ 2 exp

(
−CEε2n

)
, (6)

for the plug-in estimator Ĥh, for some CE depending only on D, K, κ1, and κ2. (Hint:
The mean value theorem will be useful here.)

(c) (5 points) Use (6) to prove the variance bound V
[
Ĥ
]
≤ CV

n , with CV depending

only on D, K, κ1, and κ2. (Hint: Recall that, for a non-negative random variable X,
E [X] =

∫∞
0 P [X > x] dx.)

(d) (5 points) Combine the bias and variance bounds to derive a bound on the mean

squared error (MSE) E
[(
Ĥh −H

)2
]

of Ĥh. Optimize this over h. What are the optimal

bandwidth and MSE rates (asymptotically, as n → ∞)? How do these compare to
the optimal bandwidth and MSE rates for kernel density estimation (smaller, same, or
larger)?
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