10/36-702 Homework 2 Additional hints for problem 4

Yifei Ma

4 Let \mathcal{H} be a Hilbert space of functions. Suppose that the evaluation functionals $\delta_x f = f(x)$ are continuous. Show that \mathcal{H} is a reproducing kernel Hilbert space and find the kernel.

h1 Dual space

Suppose the original space is $\mathcal{H} = \{f : \mathcal{X} \to \mathbb{R}\}$, where \mathcal{X} could be $[0, 1]^d$. A functional is $\alpha : \mathcal{H} \to \mathbb{R}$, i.e. $\alpha(f)$ returns a real number for every $f \in \mathcal{H}$, e.g. the evaluation functional defined above. The dual space \mathcal{H}^* consists of all continuous linear functionals. Continuity of α means that if $f_1, \ldots, f_n, f \in \mathcal{H}$ satisfies $\lim_n \|f_n - f\|_{\mathcal{H}} = 0$, then $\alpha(f_n)$, which is a number, converges to $\alpha(f)$. Linearity of α is defined after 49.1 at the beginning of the Function Space chapter.

When \mathcal{H} is a L^2 space on [0,1], δ_x needs not be continuous. A counter example is $f_1(x) = I_{\{x < 0.5\}}(x)$ and $f_2(x) = I_{\{x < 0.5\}}(x)$. By definition,

$$||f_1 - f_2||_{\mathcal{H}} = \left(\int_0^1 |f_1(x) - f_2(x)|^2 dx\right)^{\frac{1}{2}} = 0.$$

On the other hand, $\delta_{0.5}(f_1) \neq \delta_{0.5}(f_2)$.

h2 Riesz representation theorem

http://en.wikipedia.org/wiki/Riesz_representation_theorem

For any $\alpha \in \mathcal{H}^*$, there exists a unique $f_{\alpha} \in \mathcal{H}$ s.t. $\forall g \in \mathcal{H}, \alpha(g) = \langle f_a, g \rangle_{\mathcal{H}}$. Notice $\langle \alpha, g \rangle$, which spans two spaces, is not allowed.

h3 RKHS only needs (according to Larry)

to be a Hilbert space

have a symmetric kernel

with the reproducing property