
10/36-702 Homework 5
Due Friday 5/3/2013

1 Graphical Models

1. Consider a p-dimensional Gaussian graphical model PX ∼ N (0,Σ) defined on X =
(X1, . . . , Xp). Let Ω = Σ−1 denote the precision matrix. In this problem, you will
show that Ωij = 0 if and only if Xi is conditionally independent of Xj given the
remaining variables.

(a) Partition X = (Y, Z) where Y is a subset of the p variables and Z denotes the
remaining variables. What is the conditional distribution P (Y |Z)?

(b) Denoting the precision matrix in block for Ω = [ΩY Y ΩY Z ; ΩZY ΩZZ ], show that
Ω−1
Y Y = Var(Y |Z). (Hint: Use the form of the inverse of a block matrix in terms

of Schur completement)

(c) Using the above two results, argue that Ωij = 0 if and only if Xi is conditionally
independent of Xj given the remaining variables.

The above results motivate the Graphical Lasso (Glasso) algorithm. Suppose we have
data (X1, . . . , Xn) where each X i is a 0-mean p-dimensional multivariate Gaussian.
Then we perform the optimization:

arg min
Ω∈S+p

− log det(Ω) + tr(ΩSn)︸ ︷︷ ︸
negative log likelihood

+ λ||Ω||1︸ ︷︷ ︸
regularization

where S+
p is the set of all p × p positive semidefinite matrices, Sn = 1

n

∑n
i=1X

iX iT is
the sample covariance, and ||Ω||1 =

∑
i,j |Ωi,j| is a `1 penalty on every element of Ω.

The optimization produces an inverse covariance matrix with many zero-entries, which
corresponds to a sparse graph.

2. Meinshausen and Buhlmann in 2006 derived an alternative method for estimating a
sparse Gaussian graphical model. Recall from Stat 705:

• Let X, Y be two random vectors and suppose we want to regress X onto Y . Then
the expected-least-square regression function m(X) is E[Y |X], i.e:

arg min
m:X→Y

E[||Y −m(X)||22] = E[Y |X]

For this problem let X = (X1, . . . , Xp) be a p-dimensional random Gaussian vector.

(a) Suppose we regress all Xj for j 6= i onto the variable Xi. Prove that the expected-

least-square regression function m({Xj}j 6=i) is
∑

j 6=i β
i(j)Xj where βi(j) = −Ωij

Ωii

(Hint: Use Schur Complement).
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This motivates the multiple lasso procedure. Which solves:

arg min
βi∈Rp−1

1

2n
||Xi −

∑
j 6=i

βi(j)Xj||22 + λ||βi||1

for all i = 1, . . . , p. We then put an edge between Xi and Xj if either βi(j) 6= 0 or
βj(i) 6= 0.

2 PCA

1. Let X = [x1, . . . , xn] be n centered data points in Rp. Show that:

arg min
L
||X − L||2 s.t. rank(L) ≤ k

is equivalent to PCA. Here ||·||2 denotes the spectral norm (i.e. ||A||2 = maxx 6=0 ||Ax||/||x||)
which is also the largest singular value.

2. PCA can be sensitive to gross (large in magnitude) corruptions of the data. Give an
example of a dataset where changing a single entry in X can completely change the
first principal component.

3. The formulation in pat 1 above can be modified to define a version of PCA that is
stable under a few gross corruptions of the data. The robust PCA method is:

arg min
L,S
||X − L− S||2 s.t. rank(L) ≤ k1, card(S) ≤ k2

Derive a convex relaxation of this method.

4. Intuitively, justify why the solution to this problem might not be sensitive to corrup-
tions in the data. Also, argue why the above formulation is different than sparse PCA
discussed in class.

3 Density Clustering

Let X1, . . . , Xn ∈ Rd be a sample from a distribution P with density p. Let

Lt =
{
x : p(x) > t

}
.

Let

p̂(x) =
1

n

n∑
i=1

1

hd
K

(
||x−Xi||

h

)
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be the kernel density estimator. Define

L̂t =
{
x : p̂(x) > t

}
.

Define the Hausdorff distance

H(Lt, L̂t) = inf
{
ε : Lt ⊂ L̂t ⊕ ε and L̂t ⊂ Lt ⊕ ε

}
where

A⊕ ε =
⋃
x∈A

B(x, ε)

and B(x, ε) denotes a ball of radius ε centered at x. Show that, with probability at least
1− δ,

H(Lt, L̂t) ≤ C1

√
log n

nhd
+ C2h.

Hint 1: You may assume any regularity conditions on p that you need. In addition to the
usual smoothness conditions, you will need to assume that there are no “flat splots” in the
density. In other words, assume that the gradient of p does not vanish near the boundary of
the level set Lt.

Hint 2: You may use this fact: with probability at least 1− δ,

||p̂− p||∞ ≤ C1

√
log n

nhd

where p(x) = E(p̂(x)).
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