Support Vector Machines (SVMs)

Aarti Singh & Geoff Gordon

Machine Learning 10-701 Mar 22, 2021

Discriminative Classifiers

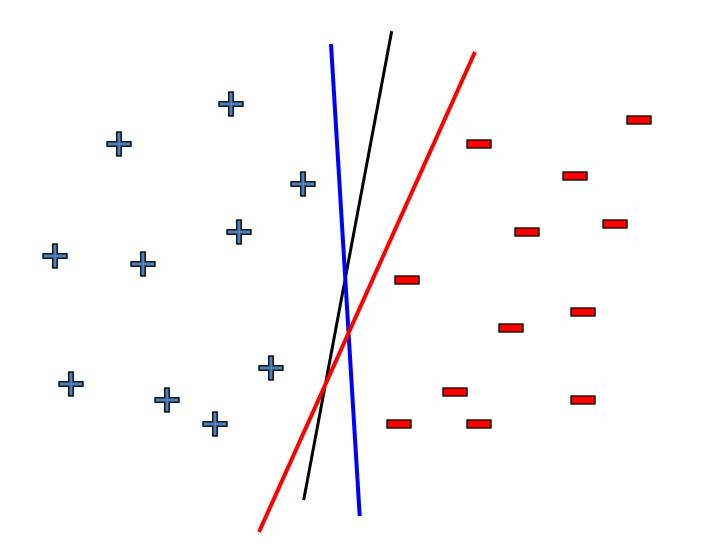
Optimal Classifier:

$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$
$$= \arg \max_{Y=y} P(X=x|Y=y)P(Y=y)$$

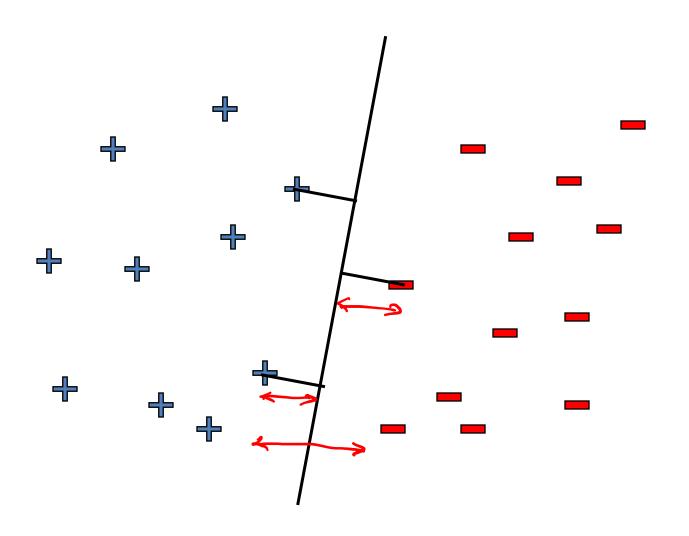
Why not learn P(Y|X) directly? Or better yet, why not learn the decision boundary directly?

- Assume some functional form for P(Y|X) (e.g. Logistic Regression) or for the decision boundary (e.g. Neural nets, SVMs - today)
- Estimate parameters of functional form directly from training data

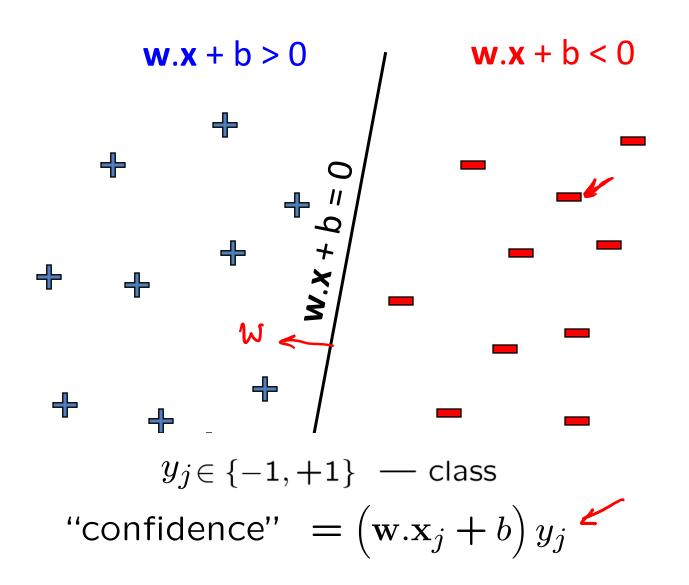
Linear classifiers – which line is better?



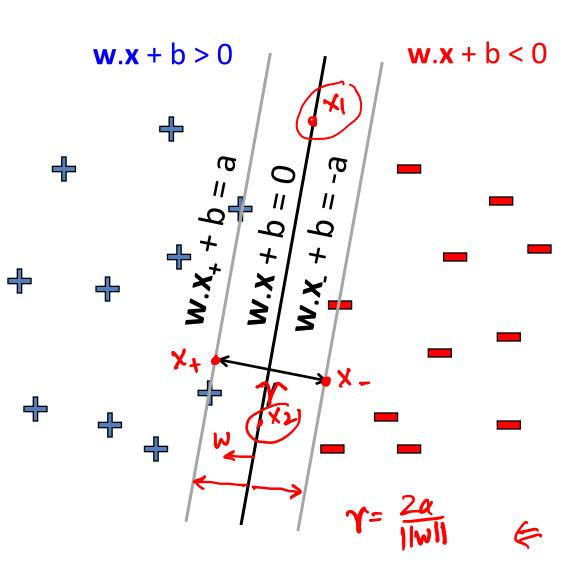
Pick the one with the largest margin!



Parameterizing the decision boundary



Maximizing the margin



$$W \cdot X_1 + b = 0$$

 $W \cdot X_2 + b = 0$
 $W \cdot (X_1 - X_2) = 0$

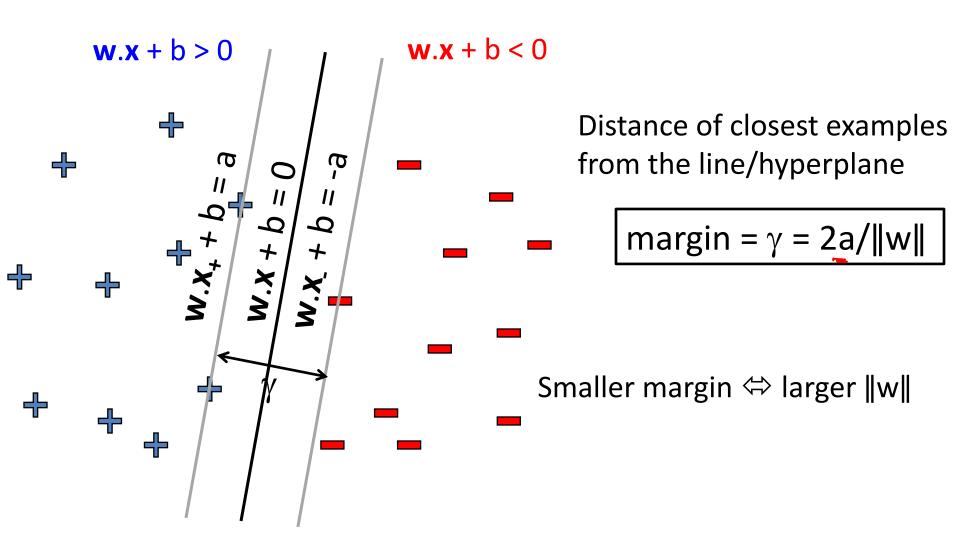
Distance of closest examples from the line/hyperplane

margin =
$$\gamma$$
 = 2a/ $\|$ w $\|$

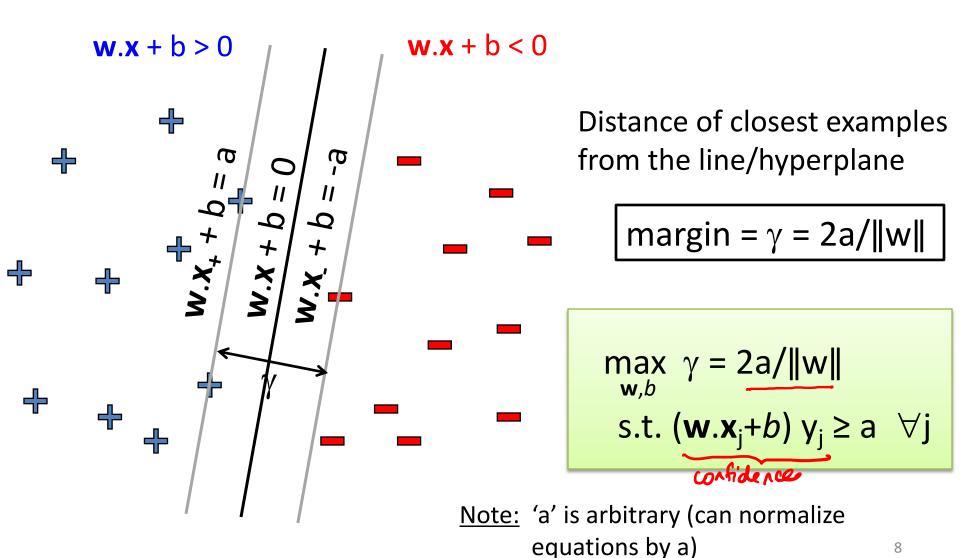
1)
$$W \perp decision boundary W.(x,-x_2) = 0$$

$$X_{-} + Y_{||w||} = \Lambda + \frac{1}{||w||} = \Lambda + \frac{1}$$

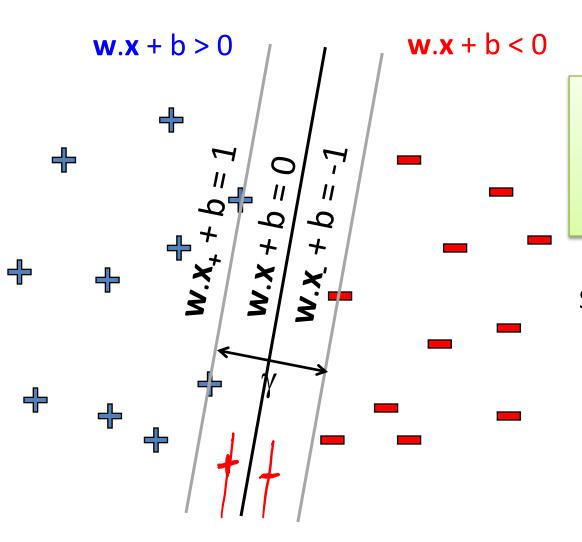
Maximizing the margin



Maximizing the margin



Support Vector Machines

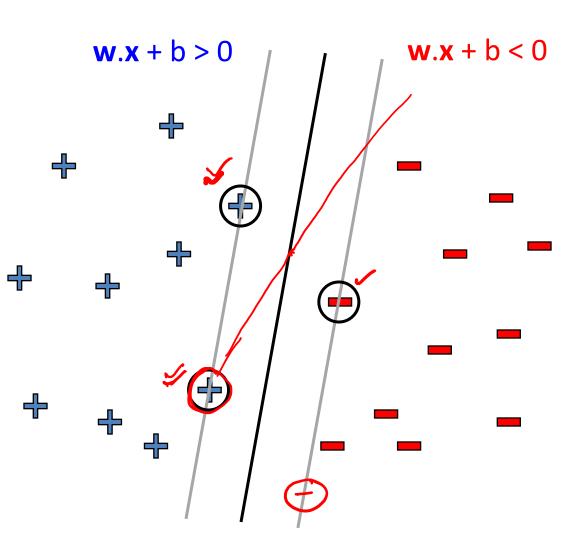


$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w}$$
s.t. $(\mathbf{w}.\mathbf{x}_j+b) \mathbf{y}_j \geq 1 \quad \forall j$

Solve efficiently by quadratic programming (QP)

- Quadratic objective, linear constraints
- Well-studied solution algorithms

Support Vectors



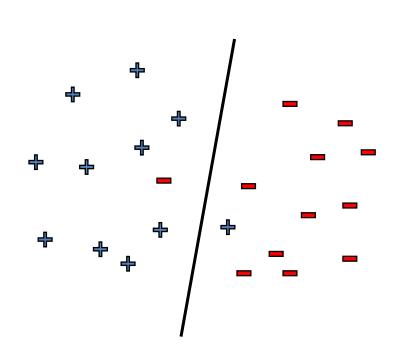
Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

For support vectors $(\mathbf{w}.\mathbf{x}_j+b)$ $\mathbf{y}_j = 1$

What if data is not linearly separable?



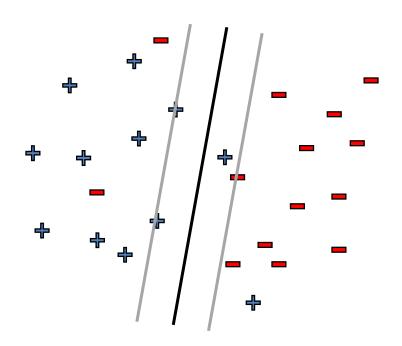
Use features of features of features of features....

$$x_1^2, x_2^2, x_1x_2,, exp(x_1)$$

But run risk of overfitting!

What if data is still not linearly separable?

Allow "error" in classification



Smaller margin ⇔ larger ||w||

min
$$(\mathbf{w}, \mathbf{w})$$
 + C #mistakes \mathbf{w}, b \mathbf{v}, b \mathbf

Maximize margin and minimize # mistakes on training data

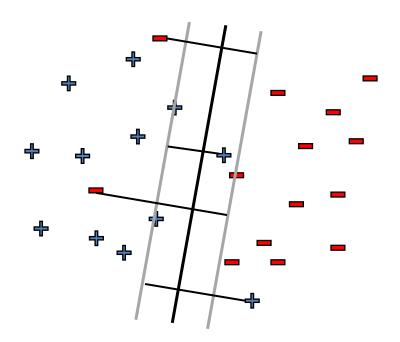
C - tradeoff parameter

Not QP ⊗

0/1 loss (doesn't distinguish between near miss and bad mistake)

What if data is still not linearly separable?

Allow "error" in classification



Soft margin approach

$$\min_{\mathbf{w},b,\{\xi_{j}\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

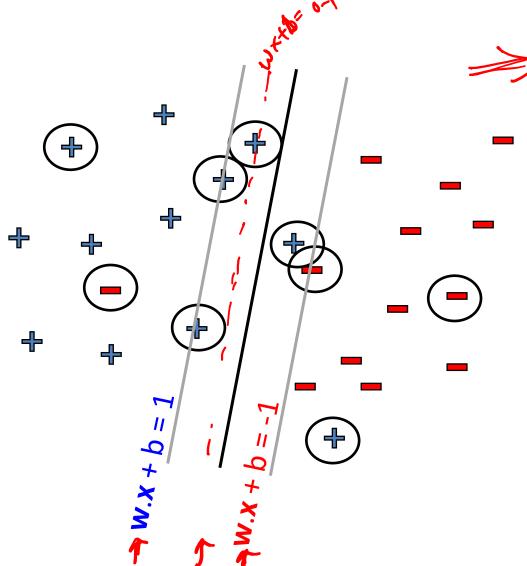
$$\xi_{j} \ge 0 \quad \forall j$$

$$\xi_j$$
 - "slack" variables
= (>1 if x_i misclassifed)

pay linear penalty if mistake

C - tradeoff parameter (C = ∞ recovers hard margin SVM)

Slack variables – Hinge loss

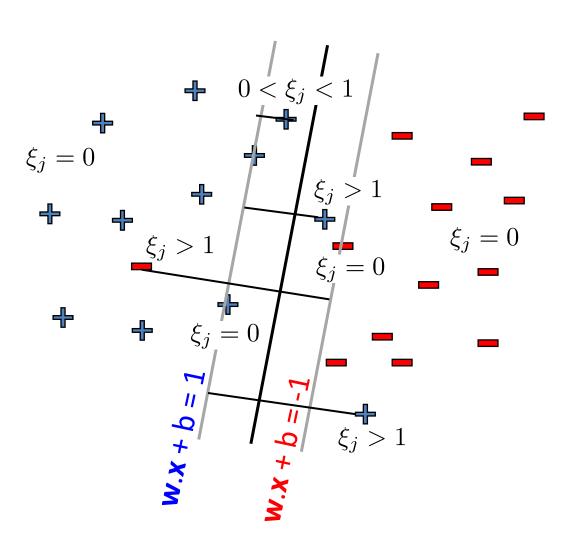


considere
$$(\mathbf{w}.\mathbf{x}_j+b)\ \mathbf{y}_j \geq 1-\xi_j \ \forall j \leftarrow$$

What is the slack ξ_j for the following points?

Confidence	1	Slack
1		0
>1		0
0 - 1		0-1
<0		>1

Slack variables – Hinge loss



Notice that

$$\xi_{j} = (1 - (\mathbf{w} \cdot x_{j} + b)y_{j}))_{+}$$

$$(a)_{t} = \text{Hinge logical}$$

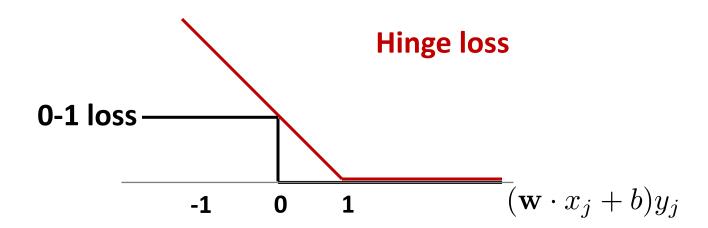
$$\mathbf{0-1 loss}$$

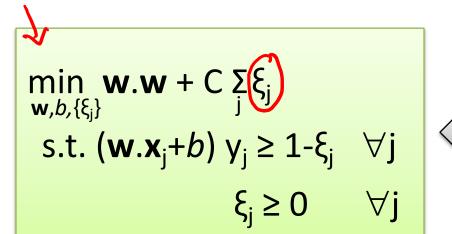
$$\mathbf{0} \quad \mathbf{1}$$

$$(\mathbf{w} \cdot x_{j} + b)y_{j}$$

Slack variables – Hinge loss

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$





Regularized hinge loss

min $\mathbf{w}.\mathbf{w} + C \sum_{j} (1-(\mathbf{w}.x_j+b)y_j)_{+j}$ \mathbf{w},b