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Discriminative Classifiers

Optimal Classifier:
f*(z) = argmax P(Y = y|X = x)
Y:y

= argmax P(X =z|Y =y)P(Y =y)
=y

Why not learn P(Y | X) directly? Or better yet, why not learn the
decision boundary directly?

* Assume some functional form for P(Y|X) (e.g. Logistic
Regression) or for the decision boundary (e.g. Neural nets,

SVMs - today)

* Estimate parameters of functional form directly from
training data



Linear classifiers — which line is
better?




Pick the one with the largest margin!



Parameterizing the decision boundary
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Maximizing the margin

w.X+b<0
Distance of closest examples
= from the line/hyperplane
E— margin =y = 2a/||w]|




Maximizing the margin

w.X+b<0
Distance of closest examples
= from the line/hyperplane
E— margin =y = 2a/||w]|

Smaller margin < larger ||w]||




Maximizing the margin

w.X+b<0
Distance of closest examples
= from the line/hyperplane
R — margin =y = 2a/||w]|
- max Yy = 2a/||w]|
w,b
- = s.t. (w.x+b)y;2a Vj

Note: ‘a’is arbitrary (can normalize
equations by a) 8



Support Vector Machines

wX+b<0
min W.w
= w,b
= s.t. (w.x+b) y; 21 Vj

Solve efficiently by quadratic
- programming (QP)
— Quadratic objective, linear
constraints

= — Well-studied solution
algorithms




Support Vectors

w.Xx+b>0 w.Xx+b<0
Linear hyperplane defined by

“support vectors”
I

Moving other points a little
@ - doesn’t effect the decision
5 - == boundary

L
@ only need to store the
— support vectors to predict
@ labels of new points

+ - - For support vectors
(w.x+b)y;=1
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What if data is not linearly separable?

Use features of features
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But run risk of overfitting!
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What if data is still not linearly
separable?

Allow “error” in classification
min w.w + C tmistakes

w,b
+ s.t. (w.x+b)y; 21 Vj
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= - = # mistakes on training data
b
o+ n _ = = C - tradeoff parameter
o
Not QP ®

Smaller margin < larger ||w]|| 0/1 loss (doesn’t distinguish between

near miss and bad mistake) -



What if data is still not linearly
separable?

Allow “error” in classification
min w.w + C ZE

w,b,{&;}
_ s.t. (w.x+b) y; 2 1-§ V|
- 20 V]
- § - “slack” variables

= (>1if x; misclassifed)

pay linear penalty if mistake

C - tradeoff parameter (C = oo
Soft margin approach recovers hard margin SVM)

StillQP © "



Slack variables — Hinge loss
(w.xj+b) y; 2 1-¢; V]

What is the slack §; for the
following points?

Confidence | Slack
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Slack variables — Hinge loss

Notice that

§=1—(w-z; +b)y;))+

Hinge loss
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Slack variables — Hinge loss

=1 —(w-z; +b)y;))+

Hinge loss

0-1 loss

-1 0 1 (W-x; +b)y,

Regularized hinge loss

min w.w + C2¢
W,b,{gj} J

s.t. (w.x+b) y; 2 1-§ V|
20 V]

& rlep wW.W + C jZ(l—(w.xj+b)yj)+



Support Vectors

Margin support vectors
=0, (wx+b)y,=1

(don’t contribute to objective
but enforce constraints on
solution)

Correctly classified but on
margin

Non-margin support

vectors

§>0

(contribute to both objective
and constraints)

1>¢ >0 Correctly classified
but inside margin

& > 1 Incorrectly classified ;;






