

MLE/MAP for learning distributions

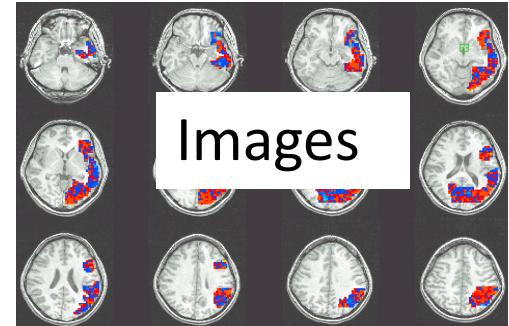
Aarti Singh & Geoff Gordon

Machine Learning 10-701
Feb 3, 2021

MACHINE LEARNING DEPARTMENT

Notion of “Features aka Attributes”

Input $X \in \mathcal{X}$



How to represent inputs mathematically?

Document vector X

- frequency of words (length of document = size of vocabulary), also known as **Bag-of-words** approach

remember to wake up when class ends
= wake ends to class remember up when

Misses out context!!

- list of n-grams (n-tuples of words)

Image X

- intensity/value at each pixel
- fourier transform values
- SIFT
- Deep representation

Distribution of Inputs

Input $X \in \mathcal{X}$

Discrete Probability Distribution $P(X) = P(X=x)$

e.g. $P(\text{head}) = \frac{1}{2}$, $P(\text{word } x \text{ in text}) = p_x$

Probabilities in a distribution sum to 1

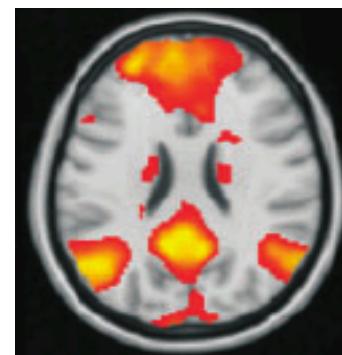
$$\sum_x P(X=x) = 1 \quad P(\text{tail}) = 1 - p(\text{head}), \sum_x p_x = 1$$

Continuous Probability density $p(x)$ $P(a \leq X \leq b) = \int_a^b p(x)dx$

e.g. $p(\text{brain activity})$

Probability density integrate to 1

$$\int p(x)dx = 1$$



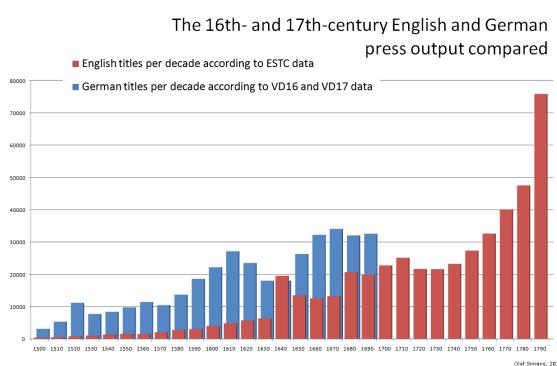
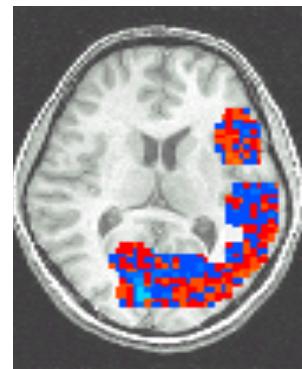
Distributions in Supervised tasks

Input $X \in \mathcal{X}$

- Distribution learning also arises in supervised learning tasks
e.g. classification

$P(Y = y)$ Distribution of class labels

$P(X = x | Y = y)$ Distribution of words in ‘news’ documents
Distribution of brain activity under ‘stress’



Olaf simons'10

$P(Y = y | X = x)$ Distribution of topics given document

How to learn parameters from data?

MLE

(Discrete case)

Learning parameters in distributions

$$P(Y = \text{Red}) = \theta$$

$$P(Y = \text{Green}) = 1 - \theta$$

Learning θ is equivalent to learning probability of head in coin flip.

➤ How do you learn that?

Data =

Answer: 3/5

➤ Why??

Bernoulli distribution

Data, $D =$

- Parameter θ : $P(\text{Heads}) = \theta$, $P(\text{Tails}) = 1-\theta$
- Flips are **i.i.d.**:
 - **Independent** events
 - **Identically distributed** according to Bernoulli distribution

Choose θ that maximizes the probability of observed data
aka Likelihood

Maximum Likelihood Estimation (MLE)

Choose θ that maximizes the probability of observed data (aka likelihood)

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)$$

MLE of probability of head:

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = 3/5$$

“Frequency of heads”

Derivation

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

Multinomial distribution

Data, D = rolls of a dice

- $P(1) = p_1, P(2) = p_2, \dots, P(6) = p_6 \quad p_1 + \dots + p_6 = 1$
- Rolls are **i.i.d.:**
 - **Independent** events
 - **Identically distributed** according to Multinomial(θ) distribution where

$$\theta = \{p_1, p_2, \dots, p_6\}$$

Choose θ that maximizes the probability of observed data
aka “Likelihood”

Maximum Likelihood Estimation (MLE)

Choose θ that maximizes the probability of observed data

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)$$

MLE of probability of rolls:

$$\hat{\theta}_{MLE} = \hat{p}_{1,MLE}, \dots, \hat{p}_{6,MLE}$$

$$\hat{p}_{y,MLE} = \frac{\alpha_y}{\sum_y \alpha_y}$$

α_y ← Rolls that turn up y
 $\sum_y \alpha_y$ ← Total number of rolls

“Frequency of roll y”

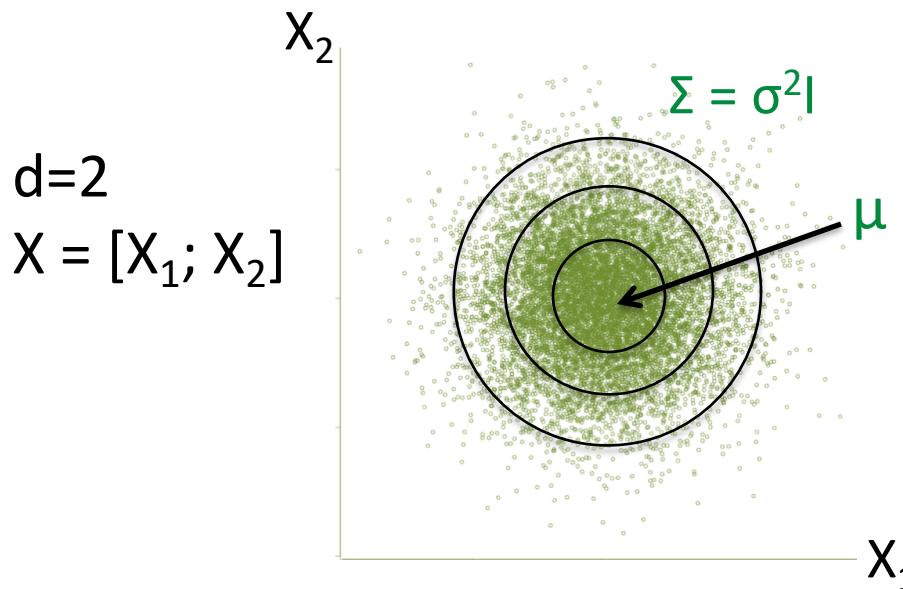
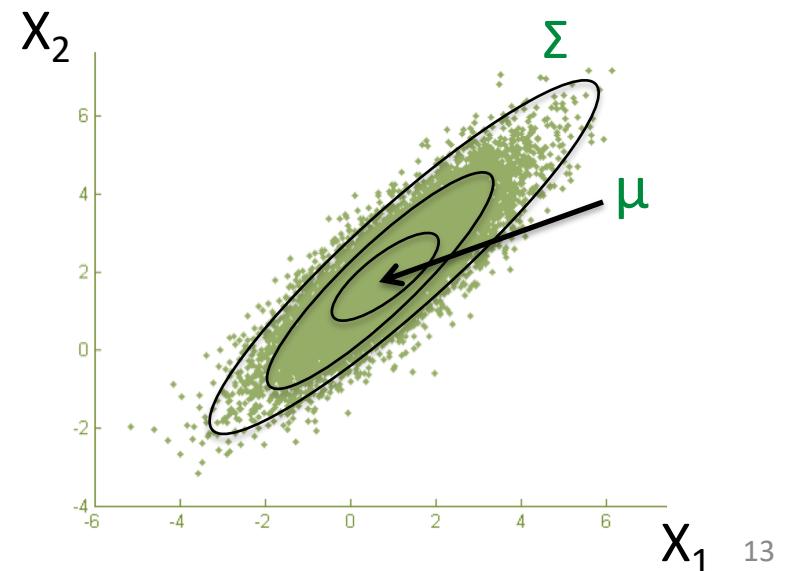
How to learn parameters from data? MLE (Continuous case)

d-dim Gaussian distribution

X is Gaussian $N(\mu, \Sigma)$

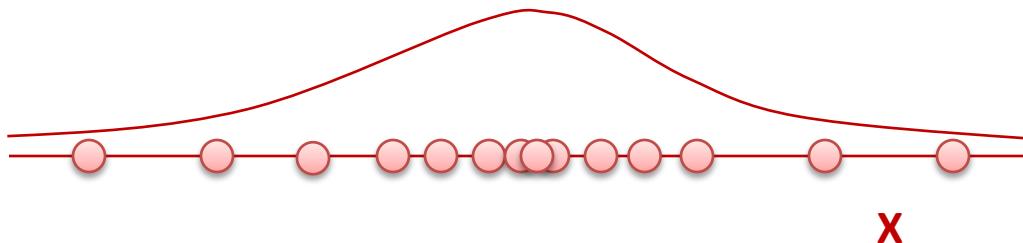
μ is d-dim vector, Σ is $d \times d$ dim matrix

$$P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),$$



Gaussian distribution

Data, $D =$



- Parameters: μ – mean, σ^2 - variance
- Data are **i.i.d.:**
 - **Independent** events
 - **Identically distributed** according to Gaussian distribution

Maximum Likelihood Estimation (MLE)

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^n P(X_i \mid \theta) \quad \text{Independent draws}\end{aligned}$$

Maximum Likelihood Estimation (MLE)

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^n P(X_i \mid \theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2 / 2\sigma^2} \quad \text{Identically distributed}\end{aligned}$$

Maximum Likelihood Estimation (MLE)

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D | \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^n P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2 / 2\sigma^2} \quad \text{Identically distributed} \\ &= \arg \max_{\theta=(\mu,\sigma^2)} \underbrace{\frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^n (X_i - \mu)^2 / 2\sigma^2}}_{J(\theta)}\end{aligned}$$

MLE for Gaussian mean

MLE for Gaussian mean and variance

$$\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Self exercise:

Derive MLE of variance?

Is the MLE of mean unbiased?

Is the MLE of variance unbiased?

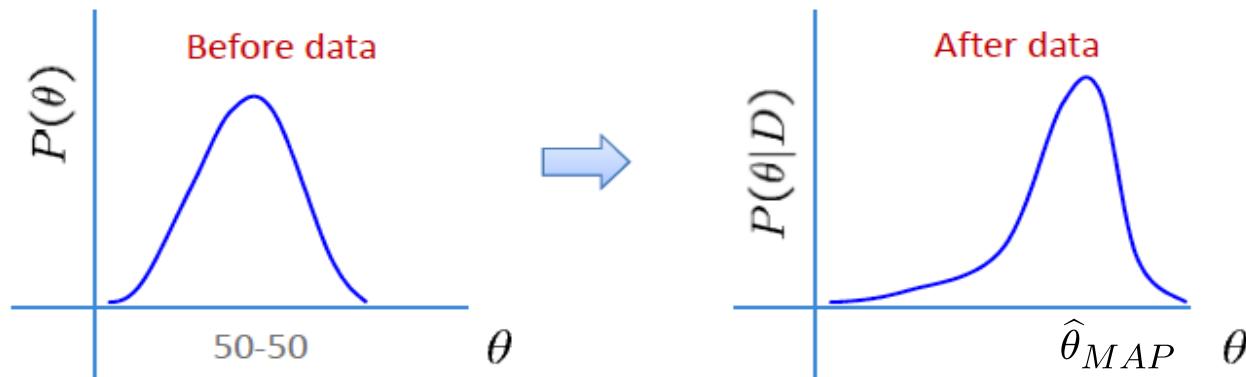
How can you make it unbiased?

d-dimensional versions?

Max A Posteriori (MAP) estimation

Can we bring in prior knowledge if data is not enough?

- Assume a prior (before seeing data D) distribution $P(\theta)$ for parameters θ



- Choose value that maximizes a posterior distribution $P(\theta|D)$ of parameters θ

$$\begin{aligned}\hat{\theta}_{MAP} &= \arg \max_{\theta} P(\theta | D) \\ &= \arg \max_{\theta} P(D | \theta)P(\theta)\end{aligned}$$

How to choose prior distribution?

- $P(\theta)$
 - Prior knowledge about domain e.g. unbiased coin $P(\theta) = 1/2$
 - A mathematically convenient form e.g. “conjugate” prior
If $P(\theta)$ is conjugate prior for $P(D|\theta)$, then Posterior has same form as prior

Posterior = Likelihood x Prior

$$P(\theta|D) = P(D|\theta) \times P(\theta)$$

e.g.	Beta	Bernoulli	Beta	$\theta = \text{bias}$
	Gaussian	Gaussian	Gaussian	$\theta = \text{mean } \mu$ (known Σ)
	inv-Wishart	Gaussian	inv-Wishart	$\theta = \text{cov matrix } \Sigma$ (known μ)

MAP estimation for Bernoulli r.v.

Choose θ that maximizes a posterior probability

$$\begin{aligned}\hat{\theta}_{MAP} &= \arg \max_{\theta} P(\theta | D) \\ &= \arg \max_{\theta} P(D | \theta)P(\theta)\end{aligned}$$

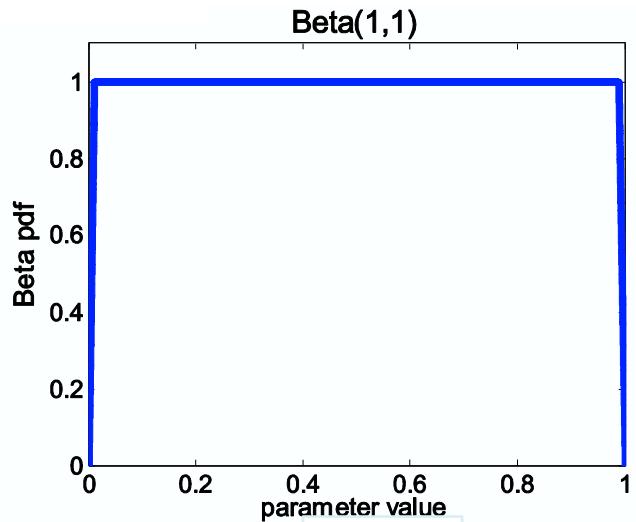
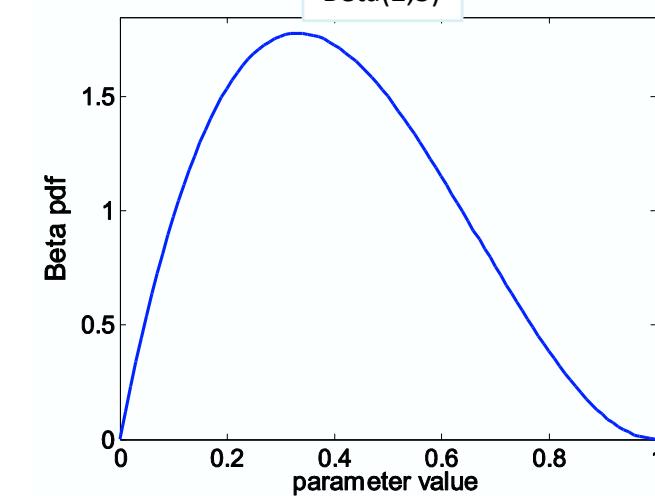
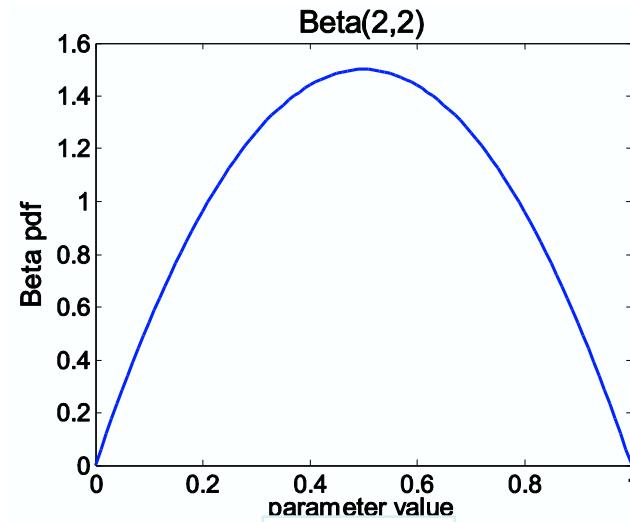
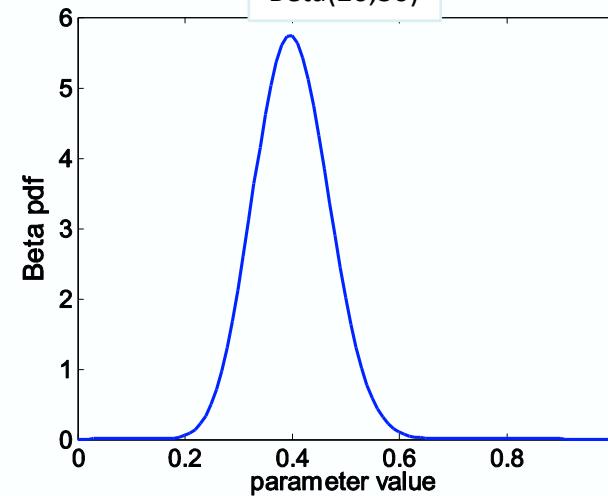
MAP estimate of probability of head (using Beta conjugate prior):

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$

Beta distribution

$Beta(\beta_H, \beta_T)$

More concentrated as values of β_H, β_T increase



MAP estimation for Bernoulli r.v.

Choose θ that maximizes a posterior probability

$$\begin{aligned}\hat{\theta}_{MAP} &= \arg \max_{\theta} P(\theta | D) \\ &= \arg \max_{\theta} P(D | \theta)P(\theta)\end{aligned}$$

MAP estimate of probability of head (using Beta conjugate prior):

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$

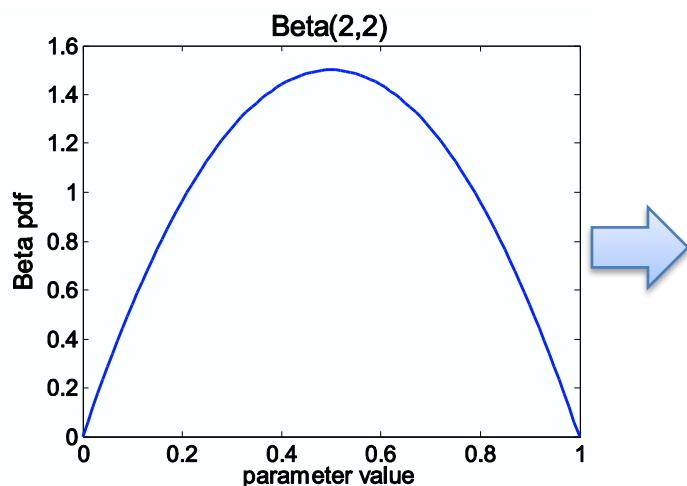
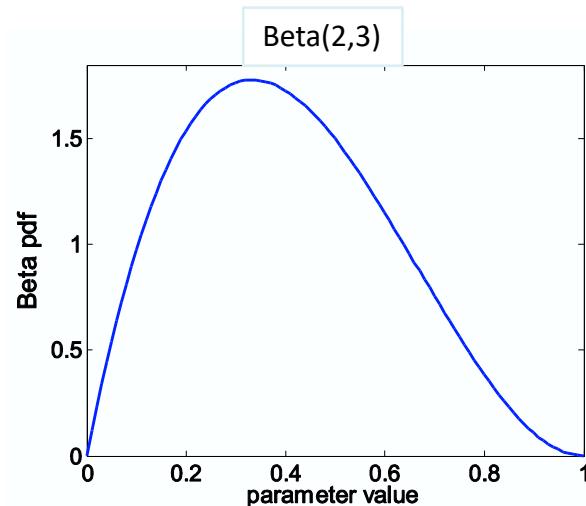
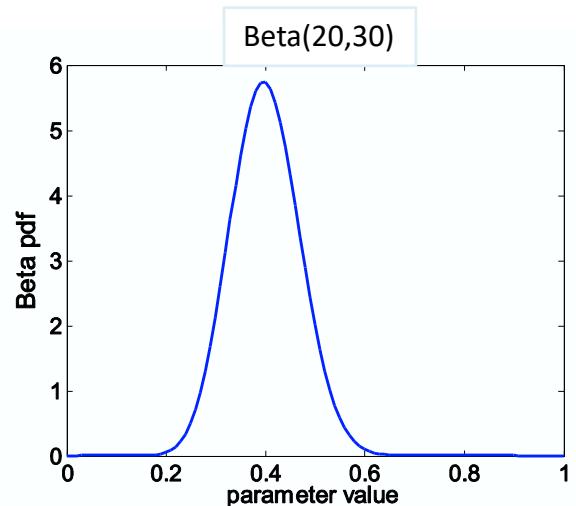
Count of H/T simply get added to parameters

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Beta conjugate prior

$$P(\theta) \sim \text{Beta}(\beta_H, \beta_T)$$

$$P(\theta|D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)$$



After observing 1 Tail

After observing
18 Heads and
28 Tails

As $n = \alpha_H + \alpha_T$ increases, posterior distribution becomes more concentrated

MAP estimation for Bernoulli r.v.

Choose θ that maximizes a posterior probability

$$\begin{aligned}\hat{\theta}_{MAP} &= \arg \max_{\theta} P(\theta | D) \\ &= \arg \max_{\theta} P(D | \theta)P(\theta)\end{aligned}$$

MAP estimate of probability of head:

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$

Count of H/T simply get added to parameters

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$\hat{\theta}_{MAP} = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

Mode of Beta distribution

Equivalent to adding extra coin flips ($\beta_H - 1$ heads, $\beta_T - 1$ tails)

As we get more data, effect of prior is “washed out”

MAP estimation for Gaussian r.v.

Parameters $\theta = (\mu, \sigma^2)$

- Mean μ (known σ^2): Gaussian prior $P(\mu) = N(\eta, \lambda^2)$

$$P(\mu | \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

$$\hat{\mu}_{MAP} = \frac{\frac{1}{\sigma^2} \sum_{i=1}^n x_i + \frac{\eta}{\lambda^2}}{\frac{n}{\sigma^2} + \frac{1}{\lambda^2}} \quad \hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i$$

As we get more data, effect of prior is “washed out”

- Variance σ^2 (known μ): inv-Wishart Distribution

MLE vs. MAP

- Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$$

- Maximum *a posteriori* (MAP) estimation

Choose value that is most probable given observed data and prior belief

$$\begin{aligned}\hat{\theta}_{MAP} &= \arg \max_{\theta} P(\theta|D) \\ &= \arg \max_{\theta} P(D|\theta)P(\theta)\end{aligned}$$

When is MAP same as MLE?

Bayes and Naïve Bayes Classifier

Aarti Singh & Geoff Gordon

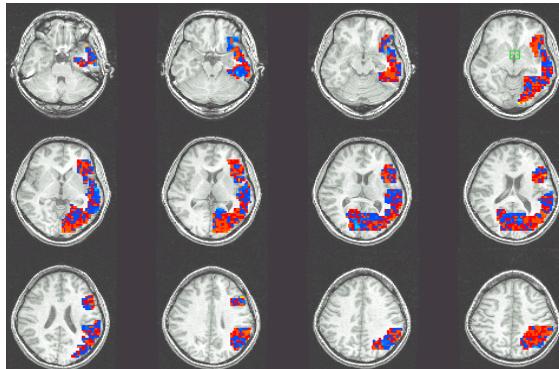
Machine Learning 10-701
Feb 3, 2021

MACHINE LEARNING DEPARTMENT

Carnegie Mellon.
School of Computer Science

Classification

Goal: Construct **prediction rule** $f : \mathcal{X} \rightarrow \mathcal{Y}$



High Stress
Moderate Stress
Low Stress

Input feature vector, \mathbf{X}

Label, \mathbf{Y}

In general: label \mathbf{Y} can belong to more than two classes

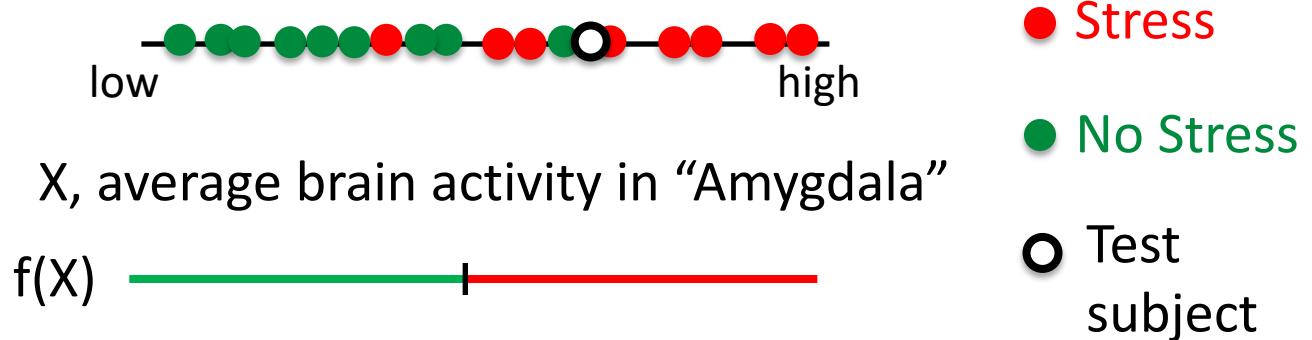
\mathbf{X} is multi-dimensional (many features represent an input)

But lets start with a simple case:

label \mathbf{Y} is binary (either “Stress” or “No Stress”)

\mathbf{X} is average brain activity in the “Amygdala”

Binary Classification



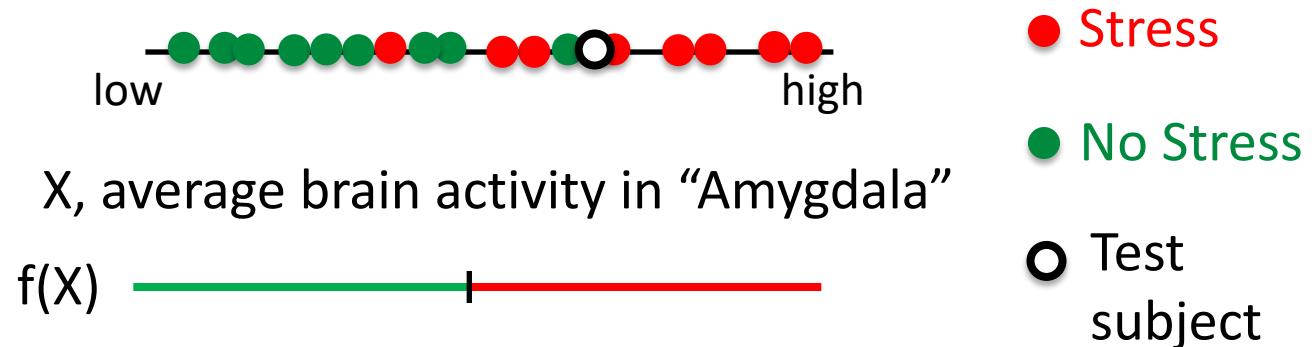
Model X and Y as random variables with joint distribution P_{XY}

Training data $\{X_i, Y_i\}_{i=1}^n \sim \text{iid}$ (independent and identically distributed) samples from P_{XY}

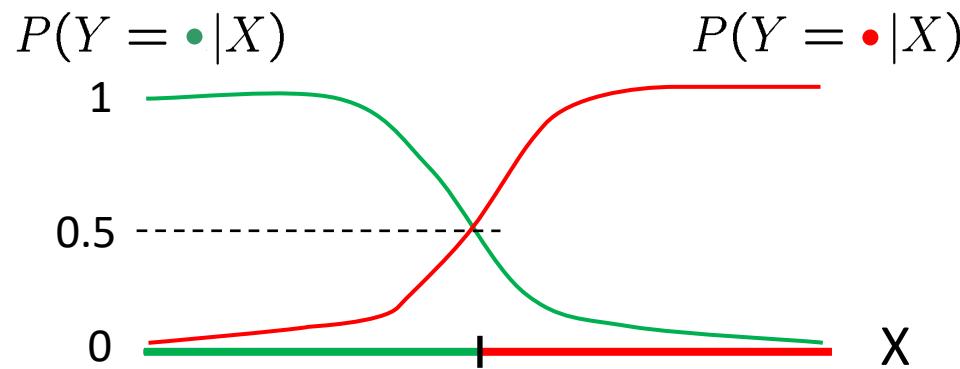
Test data $\{X, Y\} \sim \text{iid}$ sample from P_{XY}

Training and test data are independent draws from same distribution

Bayes Optimal Classifier



Model X and Y as random variables



For a given X , $f(X) = \text{label } Y$ which is more likely

$$f(x) = \arg \max_y P(Y = y | X = x)$$

Optimality of Bayes Classifier

Bayes Rule

Bayes Rule:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$$

To see this, recall:

$$P(X,Y) = P(X|Y) P(Y)$$

$$P(Y,X) = P(Y|X) P(X)$$

Thomas Bayes

Bayes Classifier

Bayes Rule:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$$

Bayes classifier:

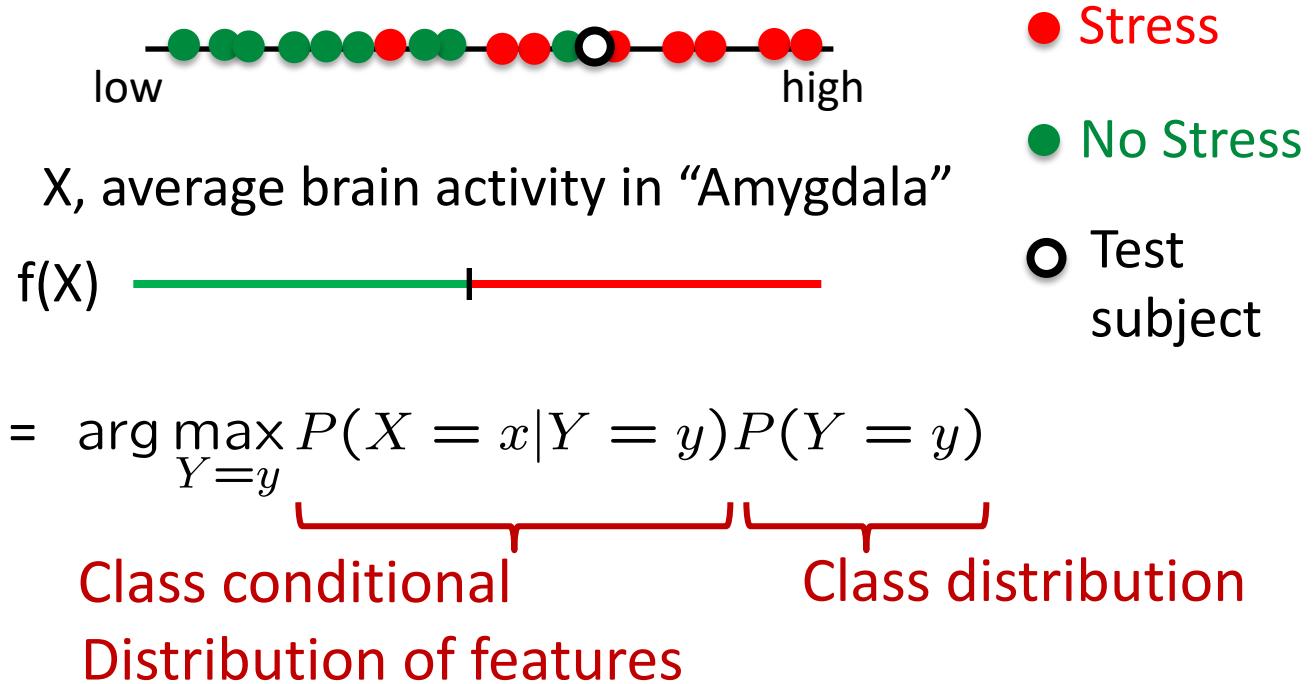
$$f(x) = \arg \max_{Y=y} P(Y = y|X = x)$$

$$= \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

Class conditional
Distribution of features

Distribution of class

Bayes Classifier

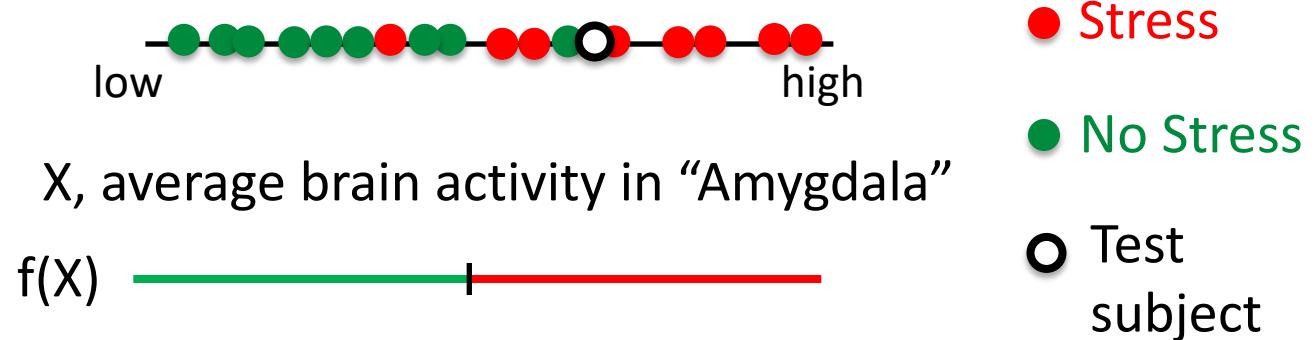


We can now consider appropriate distribution models for the two terms:

Class distribution $P(Y=y)$

Class conditional distribution of features $P(X=x | Y=y)$

Modeling class distribution



Modeling Class distribution $P(Y=y) = \text{Bernoulli}(\theta)$

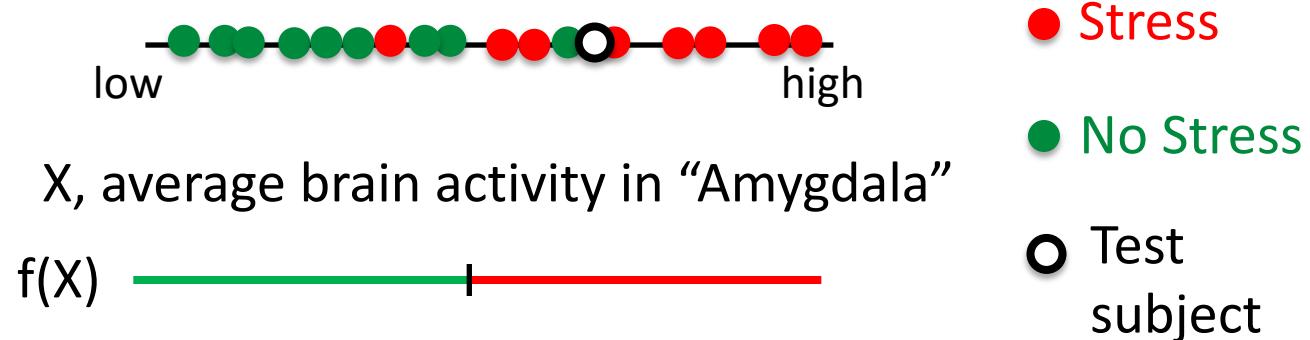
$$P(Y = \text{red}) = \theta$$

$$P(Y = \text{green}) = 1 - \theta$$

Like a coin flip

➤ How do we model multiple (>2) classes?

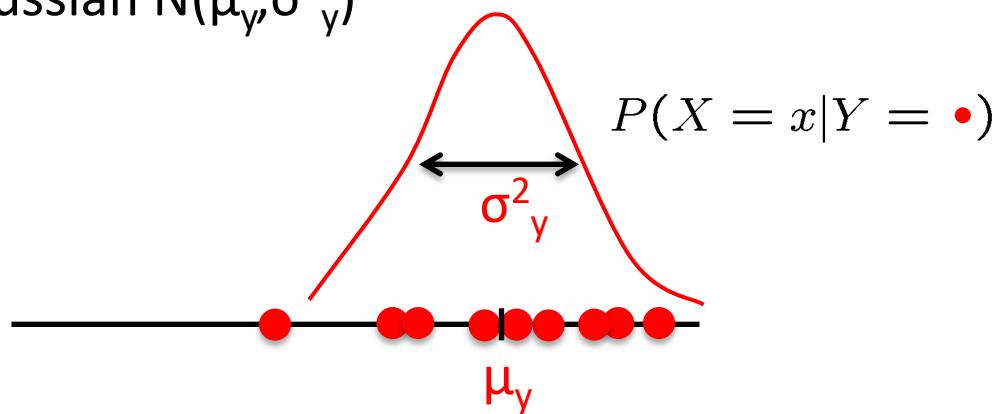
Modeling class conditional distribution of features



Modeling class conditional distribution of feature $P(X=x|Y=y)$

➤ What distribution would you use?

E.g. $P(X=x|Y=y) = \text{Gaussian } N(\mu_y, \sigma^2_y)$



Gaussian Bayes classifier

$$f(X) = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

Use MLE/MAP to learn parameters θ, μ_y, Σ_y from data

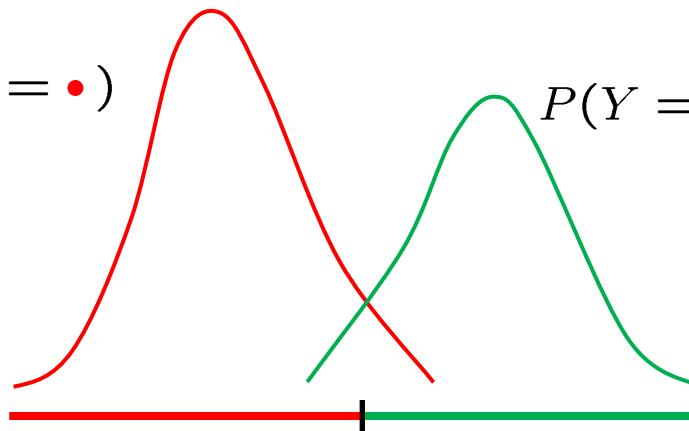
Class conditional
Distribution of features

Class distribution

Gaussian(μ_y, Σ_y)

Bernoulli(θ)

$$P(Y = \bullet)P(X = x|Y = \bullet)$$



1-dim Gaussian Bayes classifier

$$f(X) = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

Class conditional
Distribution of features

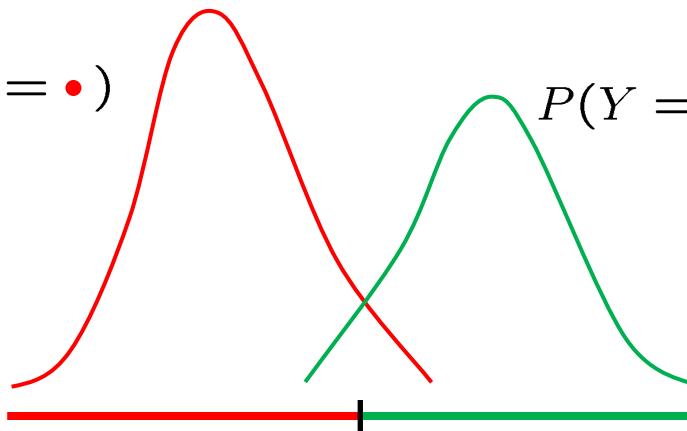
Class distribution

Gaussian(μ_y, σ^2_y)

Bernoulli(θ)

- What decision boundaries can we get in 1-dim?

$$P(Y = \bullet)P(X = x|Y = \bullet)$$



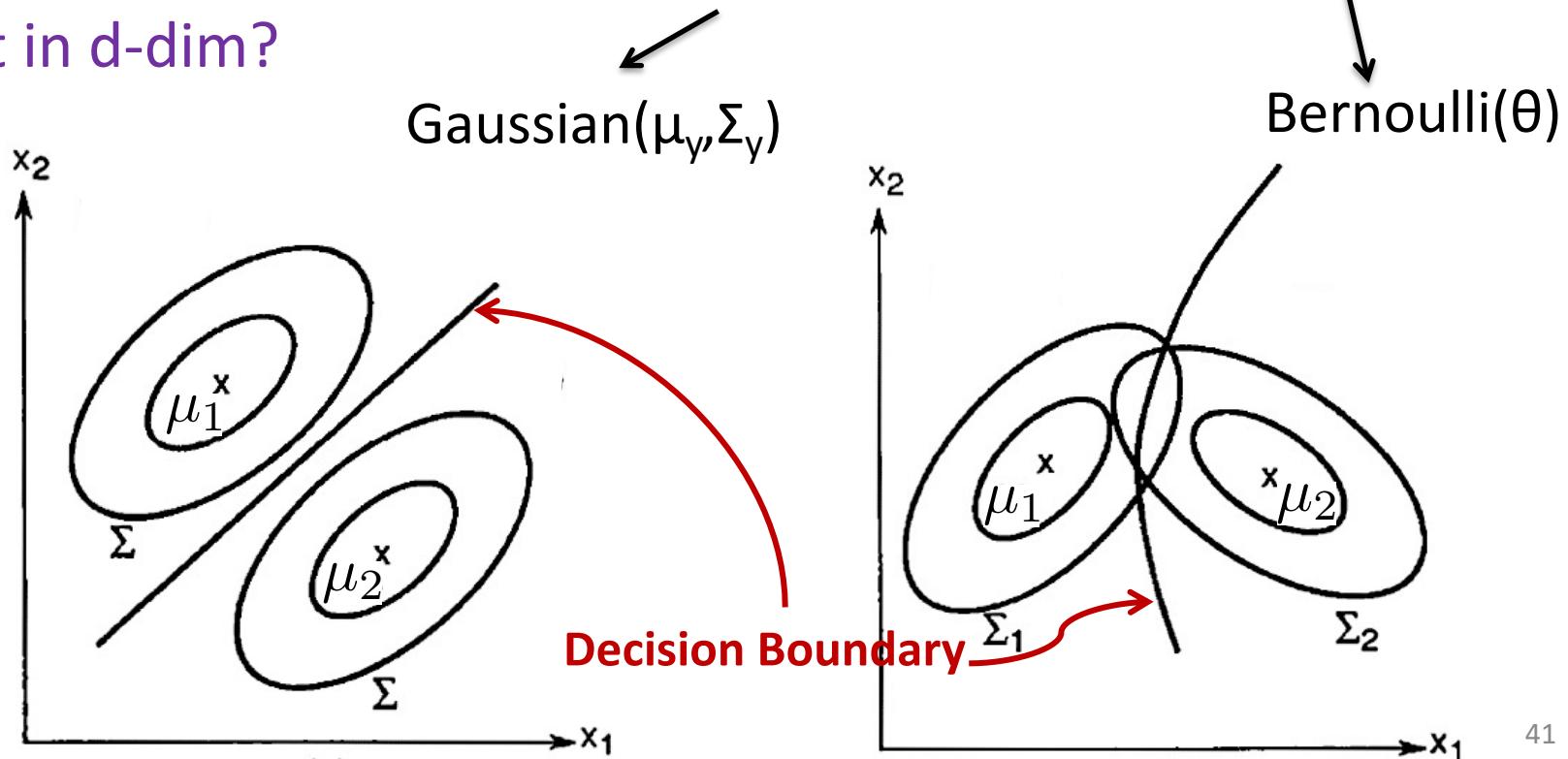
d-dim Gaussian Bayes classifier

$$f(X) = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

- What decision boundaries can we get in d-dim?

Class conditional
Distribution of features

Class distribution



Decision Boundary of Gaussian Bayes

- Decision boundary is set of points $x: P(Y=1|X=x) = P(Y=0|X=x)$

Compute the ratio

$$\begin{aligned} 1 &= \frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \frac{P(X=x|Y=1)P(Y=1)}{P(X=x|Y=0)P(Y=0)} \\ &= \sqrt{\frac{|\Sigma_0|}{|\Sigma_1|}} \exp \left(-\frac{(x - \mu_1)^\top \Sigma_1^{-1} (x - \mu_1)}{2} + \frac{(x - \mu_0)^\top \Sigma_0^{-1} (x - \mu_0)}{2} \right) \frac{\theta}{1 - \theta} \end{aligned}$$

In general, this implies a quadratic equation in x . But if $\Sigma_1 = \Sigma_0$, then quadratic part cancels out and decision boundary is linear.

How many parameters do we need to learn (continuous features)?

Class probability:

$$P(Y = y) = p_y \text{ for all } y \text{ in } H, M, L \quad p_H, p_M, p_L \text{ (sum to 1)}$$

K-1 if K labels

Class conditional distribution of features:

$$P(X=x | Y = y) \sim N(\mu_y, \Sigma_y) \text{ for each } y \quad \mu_y - d\text{-dim vector} \\ \Sigma_y - d \times d \text{ matrix}$$

$Kd + Kd(d+1)/2 = O(Kd^2)$ if d features

Quadratic in dimension d! If d = 256x256 pixels, ~ 13 billion parameters!

How many parameters do we need to learn (discrete features)?

Class probability:

$P(Y = y) = p_y$ for all y in 0, 1, 2, ..., 9

p_0, p_1, \dots, p_9 (sum to 1)

0	1	2	3	4	5	6	7	8	9
8	9	0	1	2	3	4	5	6	7
6	7	8	9	0	1	2	3	4	5
4	5	6	7	8	9	0	1	2	3
2	3	4	5	6	7	8	9	0	1

K-1 if K labels

Class conditional distribution of (binary) features:

$P(X=x | Y = y) \sim$ For each label y , maintain probability table with $2^d - 1$ entries

K($2^d - 1$) if d binary features

Exponential in dimension d!

What's wrong with too many parameters?

- How many training data needed to learn one parameter (bias of a coin)?

- Need lots of training data to learn the parameters!
 - Training data > number of (independent) parameters

Naïve Bayes Classifier

- Bayes Classifier with additional “naïve” assumption:

- Features are independent given class:

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\begin{aligned} P(X_1, X_2|Y) &= P(X_1|X_2, Y)P(X_2|Y) \\ &= P(X_1|Y)P(X_2|Y) \end{aligned}$$

- More generally:

$$P(X_1 \dots X_d|Y) = \prod_{i=1}^d P(X_i|Y)$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{bmatrix}$$

- If conditional independence assumption holds, NB is optimal classifier! But worse otherwise.

Conditional Independence

- **X is conditionally independent of Y given Z:**
probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall x, y, z) P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

- Equivalent to:
$$P(X, Y | Z) = P(X | Z)P(Y | Z)$$
- e.g., $P(Thunder | Rain, Lightning) = P(Thunder | Lightning)$
Note: does NOT mean Thunder is independent of Rain

Naïve Bayes Classifier

- Bayes Classifier with additional “naïve” assumption:
 - Features are independent given class:

$$P(X_1 \dots X_d | Y) = \prod_{i=1}^d P(X_i | Y)$$

$$\begin{aligned} f_{NB}(\mathbf{x}) &= \arg \max_y P(x_1, \dots, x_d | y) P(y) \\ &= \arg \max_y \prod_{i=1}^d P(x_i | y) P(y) \end{aligned}$$

- How many parameters now?

How many parameters do we need to learn (continuous features)?

Class probability:

$$P(Y = y) = p_y \text{ for all } y \text{ in } H, M, L \quad p_H, p_M, p_L \text{ (sum to 1)}$$

K-1 if K labels

Class conditional distribution of features (using Naïve Bayes assumption):

$$P(X_i = x_i | Y = y) \sim N(\mu^{(y)}_i, \sigma^2_i) \text{ for each } y \text{ and each pixel } i$$

2Kd if d features

Linear instead of Quadratic in dimension d!

How many parameters do we need to learn (discrete features)?

Class probability:

$P(Y = y) = p_y$ for all y in 0, 1, 2, ..., 9

p_0, p_1, \dots, p_9 (sum to 1)

0	1	2	3	4	5	6	7
8	9	0	1	2	3	4	5
6	7	8	9	0	1	2	3
4	5	6	7	8	9	0	1
2	3	4	5	6	7	8	9

K-1 if K labels

Class conditional distribution of (binary) features:

$P(X_i = x_i | Y = y)$ – one probability value for each y , pixel i

Kd if d binary features

Linear instead of Exponential in dimension d !

Naïve Bayes Classifier

- Bayes Classifier with additional “naïve” assumption:
 - Features are independent given class:

$$P(X_1 \dots X_d | Y) = \prod_{i=1}^d P(X_i | Y)$$

$$\begin{aligned} f_{NB}(\mathbf{x}) &= \arg \max_y P(x_1, \dots, x_d | y) P(y) \\ &= \arg \max_y \prod_{i=1}^d P(x_i | y) P(y) \end{aligned}$$

- Has fewer parameters, and hence requires fewer training data, even though assumption may be violated in practice

Learned Gaussian Naïve Bayes Model

Means for $P(\text{BrainActivity} \mid \text{WordCategory})$

Pairwise classification accuracy: 85%

[Mitchell et al.03]

People words

Animal words

