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Notion of “Features aka Attributes”

How to represent inputs mathematically?
Document vector X 
- frequency of words (length of document = 
size of vocabulary), also known as Bag-of-
words approach

Misses out context!!
- list of n-grams (n-tuples of words)
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Input

Document/Article

remember to wake up when class ends
= wake ends to class remember up when

Images

Image X 
- intensity/value at each 

pixel 
- fourier transform values 
- SIFT 
- Deep representation



Distribution of Inputs

Discrete Probability Distribution P(X) = P(X=x)
e.g. P(head) = ½, P(word x in text) = px

Probabilities in a distribution sum to 1 
∑xP(X=x) = 1 P(tail) = 1 – p(head), ∑x px =1

Continuous Probability density p(x)       P(a<=X<=b) =∫"
# $ % &%

e.g. p(brain activity) 

Probability density integrate to 1
∫$ % &% = 1

3

Input



Distributions in Supervised tasks

• Distribution learning also arises in supervised learning tasks 
e.g. classification

P(Y= y) Distribution of class labels
P(X = x |Y = y) Distribution of words in ‘news’ documents

Distribution of brain activity under ‘stress’

P(Y = y|X = x)   Distribution of topics given document 4

Input

Olaf simons’10



How to learn parameters from data?
MLE

(Discrete case)
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Learning parameters in distributions
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= q = 1 - q

Learning θ is equivalent to learning probability of head in coin flip. 

Ø How do you learn that?

Data = 

Answer: 3/5

Ø Why??



Bernoulli distribution
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Data, D =

• Parameter q : P(Heads) = q,  P(Tails) = 1-q

• Flips are i.i.d.:
– Independent events
– Identically distributed according to Bernoulli distribution

Choose q that maximizes the probability of observed data
aka Likelihood



Maximum Likelihood Estimation (MLE)

Choose q that maximizes the probability of observed data (aka 
likelihood)

MLE of probability of head:
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= 3/5

“Frequency of heads”



Derivation
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Multinomial distribution
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Data, D = rolls of a dice

• P(1) = p1,  P(2) = p2, …, P(6) = p6 p1+….+p6 = 1

• Rolls are i.i.d.:
– Independent events

– Identically distributed according to Multinomial(q) distribution 
where 

Choose q that maximizes the probability of observed data 
aka “Likelihood”

q = {p1, p2, … , p6}



Choose q that maximizes the probability of observed data

MLE of probability of rolls:

11“Frequency of roll y”

p̂y,MLE =
↵yP
y ↵y

p̂1,MLE , . . . , p̂6,MLE

Rolls that turn up y

Total number of rolls

Maximum Likelihood Estimation (MLE)



How to learn parameters from data?
MLE

(Continuous case)
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d-dim Gaussian distribution
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X is Gaussian N(μ, Σ) μ is d-dim vector, Σ is dxd dim matrix

μ

Σ

μ

Σ = σ2I

P (X = x|µ,⌃) = 1p
(2⇡)d|⌃|

d=2
X = [X1; X2]

X1

X2

X1

X2



Gaussian distribution
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Data, D =

• Parameters:   µ – mean, s2 - variance

• Data are i.i.d.:
– Independent events
– Identically distributed according to Gaussian distribution

X
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Maximum Likelihood Estimation (MLE)
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1p
2⇡�2

Maximum Likelihood Estimation (MLE)
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1p
2⇡�2

1

(2⇡�2)n/2

Maximum Likelihood Estimation (MLE)



MLE for Gaussian mean
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MLE for Gaussian mean and variance
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Self exercise:
Derive MLE of variance?

Is the MLE of mean unbiased?
Is the MLE of variance unbiased? 
How can you make it unbiased?

d-dimensional versions?



Max A Posteriori (MAP) estimation

Can we bring in prior knowledge if data is not enough?
• Assume a prior (before seeing data D) distribution P(q) for 

parameters q
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• Choose value that maximizes a posterior distribution P(q|D) of 
parameters q



How to choose prior distribution?
• P(q) 
– Prior knowledge about domain e.g. unbiased coin P(q) = 1/2

– A mathematically convenient form e.g. “conjugate” prior
If P(q) is conjugate prior for P(D|q), then Posterior has 
same form as prior 

Posterior  =   Likelihood x Prior
P(q|D)  =      P(D|q)    x  P(q) 

e.g. Beta              Bernoulli     Beta q = bias

Gaussian       Gaussian    Gaussian        q = mean µ
(known S)

inv-Wishart   Gaussian    inv-Wishart   q = cov matrix S
(known µ) 21



MAP estimation for Bernoulli r.v.
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Choose q that maximizes a posterior probability

MAP estimate of probability of head (using Beta conjugate prior):



Beta distribution
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More concentrated as values of bH, bT increase

Beta(2,3) Beta(20,30)



MAP estimation for Bernoulli r.v.
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Choose q that maximizes a posterior probability

MAP estimate of probability of head (using Beta conjugate prior):
Count of H/T simply get 
added to parameters



Beta conjugate prior
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As n = aH + aT increases, posterior distribution becomes more 
concentrated

Beta(2,3) Beta(20,30)

After observing 1 Tail After observing 
18 Heads and 
28 Tails



MAP estimation for Bernoulli r.v.
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Choose q that maximizes a posterior probability

MAP estimate of probability of head:

Equivalent to adding extra coin flips (βH - 1 heads, βT - 1 tails)

Mode of Beta
distribution

As we get more data, effect of prior is “washed out”

Count of H/T simply get 
added to parameters



Parameters q = (μ,σ2)
• Mean μ (known σ2 ):     Gaussian prior P(µ)

• Variance σ2 (known μ): inv-Wishart Distribution

MAP estimation for Gaussian r.v.
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As we get more data, effect of prior is “washed out”

= N(h,l2)



MLE vs. MAP

28
When is MAP same as MLE?

l Maximum Likelihood estimation (MLE)
Choose value that maximizes the probability of observed data

l Maximum a posteriori (MAP) estimation
Choose value that is most probable given observed data and 
prior belief
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Classification

High Stress
Moderate Stress
Low Stress

Input feature vector, X Label, Y

Goal:

In general: label Y can belong to more than two classes
X is multi-dimensional (many features represent an input)

But lets start with a simple case: 
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”



Binary Classification

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X)

Model X and Y as random variables with joint distribution PXY

Training data {Xi, Yi}n
i=1 ~ iid (independent and identically distributed) 

samples from PXY

Test data {X,Y} ~ iid sample from PXY

Training and test data are independent draws from same distribution

Test 
subject



Bayes Optimal Classifier
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Model X and Y as random variables

For a given X, f(X) = label Y which is more likely

f(X) = 

0

0.5

1

X

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject



Optimality of Bayes Classifier
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Bayes Rule
Bayes Rule:

34Thomas Bayes

To see this, recall:

P(X,Y) = P(X|Y) P(Y)

P(Y,X) = P(Y|X) P(X)



Bayes Classifier
Bayes Rule:

Bayes classifier:
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Class conditional 
Distribution of features

Distribution of class

f(X) = 



Bayes Classifier
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Class conditional 
Distribution of features

Class distribution

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

f(X) = 



Modeling class distribution
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= q = 1 - q

Modeling Class distribution P(Y=y)

Like a coin flip

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

= Bernoulli(q)

Ø How do we model multiple (>2) classes?



Modeling class conditional distribution of feature P(X=x|Y=y)

Modeling class conditional 
distribution of features

38

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

E.g. P(X=x|Y=y) = Gaussian N(μy,σ2
y)

σ2
y

μy

Ø What distribution would you use?



Gaussian Bayes classifier
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Bernoulli(θ)Gaussian(μy, Sy)

Use MLE/MAP to learn 
parameters θ, μy, Σy
from data 

Class conditional 
Distribution of features

Class distribution

f(X) = 



1-dim Gaussian Bayes classifier
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Bernoulli(θ)Gaussian(μy, σ2
y)

Class conditional 
Distribution of features

Class distribution

f(X) = 

Ø What decision 
boundaries can we 
get in 1-dim?



d-dim Gaussian Bayes classifier
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Bernoulli(θ)

Decision Boundary

µ1

µ1

µ2

µ2

Gaussian(μy,Σy)

Class conditional 
Distribution of features

Class distribution

f(X) = 

Ø What decision 
boundaries can we 
get in d-dim?
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• Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

Decision Boundary of Gaussian Bayes

P (Y = 1|X = x)

P (Y = 0|X = x)
=

P (X = x|Y = 1)P (Y = 1)

P (X = x|Y = 0)P (Y = 0)

=

s
|⌃0|
|⌃1|

exp

✓
��(x� µ1)⌃

�1
1 (x� µ1)0

2
+

(x� µ0)⌃
�1
0 (x� µ0)0

2

◆
✓

1� ✓

In general, this implies a quadratic equation in x. But if Σ1= Σ0, then 
quadratic part cancels out and decision boundary is linear.

1 = 

TT



How many parameters do we need to 

learn (continuous features)?
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Kd + Kd(d+1)/2 = O(Kd2) if d features

Quadratic in dimension d!  If d = 256x256 

pixels, ~ 13 billion parameters!

Class probability:

P(Y = y) = py for all y in H, M, L pH, pM, pL (sum to 1)

Class conditional distribution of features:

P(X=x|Y = y) ~ N(μy,Σy) for each y   μy – d-dim vector
Σy - dxd matrix

K-1 if K labels



How many parameters do we need to 
learn (discrete features)?
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Class probability:

P(Y = y) = py for all y in 0, 1, 2, …, 9

p0, p1, …, p9 (sum to 1)

Class conditional distribution of (binary) features:

P(X=x|Y = y) ~ For each label y, maintain probability table with 

2d-1 entries 

K-1 if K labels

K(2d – 1) if d binary features

Exponential in dimension d!



What’s wrong with too many 
parameters?

• How many training data needed to learn one parameter (bias 
of a coin)?

• Need lots of training data to learn the parameters! 
– Training data > number of (independent) parameters
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Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

– More generally:

• If conditional independence assumption holds, NB is 
optimal classifier! But worse otherwise.

X =


X1

X2

�

=

2

664

X1

X2

. . .
Xd

3

775X =


X1

X2

�



Conditional Independence
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• X is conditionally independent of Y given Z:
probability distribution governing X is independent of the value 
of Y, given the value of Z

• Equivalent to:

• e.g.,
Note: does NOT mean Thunder is independent of Rain



Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

• How many parameters now?



How many parameters do we need to 
learn (continuous features)?
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2Kd if d features

Linear instead of Quadratic in dimension d!  

Class probability:

P(Y = y) = py for all y in H, M, L pH, pM, pL (sum to 1)

Class conditional distribution of features (using Naïve Bayes 
assumption):

P(Xi = xi|Y = y) ~ N(μ(y)
i, σ2

i 
(y)) for each y and each pixel i

K-1 if K labels



How many parameters do we need to 
learn (discrete features)?
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Class probability:

P(Y = y) = py for all y in 0, 1, 2, …, 9

p0, p1, …, p9 (sum to 1)

Class conditional distribution of (binary) features:

P(Xi = xi|Y = y) – one probability value for each y, pixel i

K-1 if K labels

Kd if d binary features

Linear instead of Exponential in dimension d!



Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

• Has fewer parameters, and hence requires fewer training 
data, even though assumption may be violated in practice



Learned Gaussian Naïve Bayes Model 
Means for P(BrainActivity | WordCategory)

52

Animal wordsPeople words
Pairwise classification accuracy: 85% [Mitchell et al.03]




