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Notion of “Features aka Attributes”

Input X ¢ X

Document/Article

How to represent inputs mathematically?

Document vector X Image X

- frequency of words (length of document = - intensity/value at each

size of vocabulary), also known as Bag-of- pixel

words approach - fourier transform values
- SIFT

remember to wake up when class ends
= wake ends to class remember up when - Deep representation

Misses out context!!
- list of n-grams (n-tuples of words)



Distribution of Inputs

Input X ¢ X

W

Discrete Probability Distribution P(X) = P(X=x) ::
e.g. P(head) =%, P(word x in text) =

Probabilities in a distribution sum to 1
> P(X=x)=1 P(tail) =1 —p(head), >, p, =

Continuous Probability density p(x)  P(a<=X<=b) =ff p(x)dx
e.g. p(brain activity)

Probability density integrate to 1
[p(x)dx =1




Distributions in Supervised tasks

Input X ¢ X

* Distribution learning also arises in supervised learning tasks
e.g. classification
P(Y=y) Distribution of class labels
P(X =x |Y =vy) Distribution of words in ‘news’ documents
Distribution of brain activity under ‘stress’

The 16th- and 17th-century English and German
press output compared

Olaf simons’10

P(Y =y|X =x) Distribution of topics given document ,



How to learn parameters from data?
MILE

(Discrete case)



Learning parameters in distributions
P(Y =@)=06 P(Y =@)=1-6

Learning O is equivalent to learning probability of head in coin flip.

» How do you learn that?

Answer: 3/5

» Why??



Bernoulli distribution

 Parameter 0 : P(Heads) =0, P(Tails) = 1-6

* Flips arei.i.d.:
— Independent events
— ldentically distributed according to Bernoulli distribution

Choose O that maximizes the probability of observed data
aka Likelihood




Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data (aka
likelihood)

Ovire = argm@ax P(D | 0)

MLE of probability of head:

apy
apg + ar

OviLE = =3/5

"Frequency of heads”



Derivation

é\MLE = argm@ax P(D‘Q)



Multinomial distribution

Data, D = rolls of a dice -~ s

* P(l) = pll P(Z) = p2) seey P(6) = p6 p1+""+p6 =1
 Rolls arei.i.d.:
— Independent events

— ldentically distributed according to Multinomial(0) distribution
where

e — {pla p2a ser ) p6}

Choose O that maximizes the probability of observed data
aka “Likelihood”
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Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data

Ovire = argm@ax P(D | 0)

MLE of probability of rolls:
OvireE = P1LMLE,--->D6,MLE

Qyy Rolls that turn up y

Py MLE —
Zy O‘y *— Total number of rolls

"Frequency of roll y* 1



How to learn parameters from data?
MILE

(Continuous case)
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d-dim Gaussian distribution

X is Gaussian N(, 2) W is d-dim vector, % is dxd dim matrix
P(X =z|p, %) = 1 exp (—l(x —p) 2 (x - n))
| Vv (2m)4[x] 2 |
X, X
3 =0 2_
=2 |
X = [Xy; X5




Gaussian distribution

_/\

Data, D = O0—O0—0 000 OO0O0—0O0——0
X

* Parameters: p—mean, 6% - variance

 Dataarei.i.d.:
— Independent events

— ldentically distributed according to Gaussian distribution
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Maximum Likelihood Estimation (IMLE)

Choose 0= (1,067%) that maximizes the probability of observed data
Oy = arg max P(D | 9)

n
= arg mgx H P(Xz. |9) Independent draws

=1
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Maximum Likelihood Estimation (IMLE)

Choose 0= (1,67%) that maximizes the probability of observed data
Orirp = arg max PLE|(8)

mn
= arg mgx H p(Xz. |9) Independent draws
=1

Identically
distributed

1 —(Xi—p)?/20

n
p—
0 - 1V2mo?
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Maximum Likelihood Estimation (IMLE)

Choose 0= (u,06?%) that maximizes the probability of observed data
Oy = arg max P(D | 9)
n
— . Ind dent d
= arg mgxl_JIZP(sz) ndependent draws
=

Identically

. L 2 2
e~ (Xi—n)"/20 distributed

n h
1
= arg max
0 g V2mo?

L S (Xi-w)?/20°
= arg max e =i
P g (‘2m2)n/2 |

7 (6)




MLE for Gaussian mean



MVLE for Gaussian mean and variance

1 mn
AVLE = — Y X
nNi—1
2 1 & _\2
OMLE — EZ(%_M
i=1

Self exercise:
Derive MLE of variance?

Is the MLE of mean unbiased?
Is the MLE of variance unbiased?
How can you make it unbiased?

d-dimensional versions?
19



Max A Posteriori (MAP) estimation

Can we bring in prior knowledge if data is not enough?

 Assume a prior (before seeing data D) distribution P(0) for

parameters 0

Before data

P(6)

50-50

/\ =

0

After data

P(6|D)

Orrap O

* Choose value that maximizes a posterior distribution P(0|D) of

parameters® ~

Orrap

arg m@ax P(0| D)

arg m@ax P(D|0)P(0)
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How to choose prior distribution?
* P(6)

— Prior knowledge about domain e.g. unbiased coin P(0) = 1/2

— A mathematically convenient form e.g. “conjugate” prior

If P(O) is conjugate prior for P(D|0), then Posterior has
same form as prior

Posterior = Likelihood x Prior
P(O|D) = P(D|O) x P(0)

e.g. Beta Bernoulli Beta 0 = bias

Gaussian  Gaussian Gaussian 0 =mean
(known X)

inv-Wishart Gaussian inv-Wishart 0 = cov matrix X
(known u) 2



MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)
MAP estimate of probability of head (using Beta conjugate prior):
P(9) ~ Beta(By, Br)
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Beta distribution

Beta(Bg, Br)

Beta(1,1)
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg meax P(D|60)P(0)

MAP estimate of probability of head (using Beta conjugate prior):

P(0) ~ Beta(By, B1) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(By + oy, BT + ar)
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Beta conjugate prior

P(0) ~ Beta(Bg, Br) P(0|D) ~ Beta(By + am, fr + ar)
Beta(2,2) Beta(2,3) Beta(20,30)
1.6 : . : I N I 6+ S
14}
15 : St
12} ]
5 1 1 - A
30.8— |:> § i 33
B o6l : B i
2l
04} ] 05!
02} ] 1r
% 02 04 06 03 1 % 02 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
parameter value parameter value parameter value
After observing 1 Tail After observing
18 Heads and
28 Tails
As n = ay + ar increases, posterior distribution becomes more

concentrated
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)

MAP estimate of probability of head:

P(0) ~ Beta(By, B1) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(By + oy, BT + ar)

ag+ 0y —1 Mode of Beta

Equivalent to adding extra coin flips (B, - 1 heads, B - 1 tails)

As we get more data, effect of prior is “washed out”
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MAP estimation for Gaussian r.v.

Parameters 0 = (p,0?)
* Mean p (known o?):  Gaussian prior P(p)= N(n,\2)

P A) 1 —(u—2?7)2
: — e 2
Pl W
1l —n n n
MMAP — = rfn 1 A MMLE — EZ xT;
52 1T )2 =1

As we get more data, effect of prior is “washed out”

e Variance o? (known p): inv-Wishart Distribution
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MLE vs. MAP

e Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

Orir = arg m@ax P(D|0)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Orfap = arg mgx P(6|D)
= arg meax P(D|0)P(0)

When is MAP same as MLE?
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Classification

Goal: Construct prediction rule f : X — )Y

High Stress
i Moderate Stress
Low Stress

Input feature vector, X Label, Y

In general: label Y can belong to more than two classes
X is multi-dimensional (many features represent an input)

But lets start with a simple case:
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”



Binary Classification

—9-00-000000-00600 0000 ® Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X : :
(X) subject

Model X and Y as random variables with joint distribution Pyy

Training data {X, Y.}"._; ~iid (independent and identically distributed)
samples from P,y

Test data {X,Y} ~ iid sample from P,y

Training and test data are independent draws from same distribution



Bayes Optimal Classifier

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
Py O Test
fX) ' subject

Model X and Y as random variables

P(Y = +|X) P(Y = «|X)
1

0.5 ------m-eooeme= -

0

For a given X, f(X) = label Y which is more likely

f(X)= argmax P(Y = y|X = x)
Y

32



Optimality of Bayes Classifier



Bayes Rule

Bayes Rule: P(Y|X) = P(XIIDS(/))(I;(Y)
P(Y =yX =2) = DE= ﬂ?xzfag(y =Y)

To see this, recall:
P(X,Y) = P(X]Y) P(Y)

P(Y,X) = P(Y]X) P(X)

Thomas Bayes 34



Bayes Classifier

Bayes Rule: P(Y|X) = P(X]LBE;(J;(Y)
PO =i =) = S

Bayes classifier:

f(X) = arg max P(Y = y|X = x)

=y
= argmax P(X =z|Y =y)P(Y =vy)
_yl J\ J
| |
Class conditional Distribution of class

Distribution of features

35



Bayes Classifier

e © ® Stress

low high
_ o ® No Stress
X, average brain activity in “Amygdala”

£(X) y O Test

subject

f(X) = arg }rpax P(X =x|Y =y)P(Y =vy)
==y
\ J\ J

| |
Class conditional Class distribution
Distribution of features

We can now consider appropriate distribution models for the two terms:
Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y) Ny



Modeling class distribution

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
Py O Test
fX) ' subject

Modeling Class distribution P(Y=y) = Bernoulli(0)

P(Y =@)=1-0
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Modeling class conditional
distribution of features

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X R :
(X) subject

Modeling class conditional distribution of feature P(X=x|Y=y)
» What distribution would you use?

E.g. P(X=x|Y=y) = Gaussian N(u,,0%)

38



Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Use MLE/MAP to learn
parameters 6, p,, 2,
from data

P(Y: .)P(X:CC|Y:.)

Y=y
\ J\ J

| |
Class conditional Class distribution
Distribution of features \

/

Gaussian(p,, Z,) Bernoulli(0)

P(Y = «)P(X = z|Y = *)

39




1-dim Gaussian Bayes classifier

f(X) = arg gpax P(X =z|Y =y)P(Y =vy)

=y
\ J\ )
Class conditional' Clz'ass distribution
Distribution of features
» What decision j \
boundaries can we . .
get in 1-dim? Gaussian(p,, 62,) Bernoulli(6)

P(Y = ¢)P(X =z|Y =) P(Y = ¢)P(X = z|Y = o)

40



d-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Y=y
\ J\ J
» What decision Class conditional Class distribution
boundaries can we  Distribution of features
get in d-dim? e \,
Gaussian(u,,Z,) Bernoulli(0)

A

Decision Boun

> X1




Decision Boundary of Gaussian Bayes

* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

In general, this implies a quadratic equation in x. But if ;= %, then
guadratic part cancels out and decision boundary is linear.

42



How many parameters do we need to
learn (continuous features)?

Class probability:
P(Y=y)=p,forallyinH, M, L Pu, Py, PL (SUM to 1)
K-1if K labels

Class conditional distribution of features:

P(X=x|Y =y) ~ N(n,Z,) for each y W, — d-dim vector
2, - dxd matrix
Kd + Kd(d+1)/2 = O(Kd?) if d features

Quadratic in dimension d! If d = 256x256
pixels, ~ 13 billion parameters! 4



How many parameters do we need to
learn (discrete features)?

Class probability: 2 ; g ? ; g {; 2

P(Y=y)=p,forallyinQ,1,2,..,9 T870123

H+5¢T7T%1701

Po, P1, - Pg (SUM to 1) 2 34¢Cc7% ]
K-1 if K labels

Class conditional distribution of (binary) features:

P(X=x|Y =y) ~ For each label y, maintain probability table with
29-1 entries

K(29 - 1) if d binary features

Exponential in dimension d!

44



What’s wrong with too many
parameters?

How many training data needed to learn one parameter (bias
of a coin)?

Need lots of training data to learn the parameters!
— Training data > number of (independent) parameters

45



Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:

— Features are independent given class:

P(X1,X2|Y) = P(X1|X2,Y)P(X3|Y)
= P(X1]Y)P(X>2|Y)

— More generally:
d X =
P(X1..X4|Y) = ]| P(X3]Y)
i=1

If conditional independence assumption holds, NB is
optimal classifier! But worse otherwise.

46




Conditional Independence

* Xis conditionally independent of Y given Z:

probability distribution governing X is independent of the value
of Y, given the value of Z

(Ve,y,2)) P(X =z|Y =y, Z =2) = P(X =z|Z = z)

* Equivalent to:
P(X,Y | 2)=P(X | 2)P(Y | 2)

* e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
Note: does NOT mean Thunder is independent of Rain
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Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = || P(X3]Y)
i=1
fyp(x) = argmax P(z1,...,2q|y)P(y)
d
= argmax 1] P(zly)P(y)
1=1

How many parameters now?

48



How many parameters do we need to
learn (continuous features)?

Class probability:
P(Y=y)=p,forallyinH, M, L Pu, Py, PL (SUM to 1)
K-1if K labels

Class conditional distribution of features (using Naive Bayes
assumption):

P(X; =x.|Y =y) ~ N(u),, a2 V) for each y and each pixel i
2Kd  if d features

Linear instead of Quadratic in dimension d!
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How many parameters do we need to
learn (discrete features)?

Class probability: 2 ;g?;g{;g
P(Y=y)=p,forallyinQ,1,2,..,9 1870123

H5¢T7%17101
Po Py, -+ Pg (sum to 1) 234¢Cc7¢ 4

K-1 if K labels
Class conditional distribution of (binary) features:

P(X; = x|Y =y) — one probability value for each vy, pixel i

Kd if d binary features
Linear instead of Exponential in dimension d!
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Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = || P(X3]Y)
i=1
fvp(x) = argmax P(z1,...,2q|y)P(y)
d
= argmax 1] P(zly)P(y)
1=1

Has fewer parameters, and hence requires fewer training
data, even though assumption may be violated in practice
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Learned Gaussian Naive Bayes Model
Means for P(BrainActivity | WordCategory)

. . . ) [Mitchell et al.03]
Pairwise cla55|f|cat|on dCCUuracy. 85%

People words 5% s Animal words
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