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i.i.d to sequential data

* So far we assumed independent, {Xx;}» . vid p(X)
identically distributed data

* Sequential data

— Time-series data
E.g. Speech

Amplitude

Tm (e)

— Characters in a sentence . . . . E
— Base pairs along a DNA strand
3 ) 3 ! ! IJ ! !




Markov Models

NI PR e B AT
e Joint Distribution

p(X)

p(X17 X27 R 7Xn)
= p(X1)p(X2|X1)p(X3] X2, X1) .. p(X4| X1, .., X1)

= Hp(X3|X7‘_1, ce ,Xl) Chain rule
1=1

* Markov Assumption (mt" order)

p(X) = Hp(Xi|Xz'—1, L ,X,L._m) Current observation
im1 — only depends on past
m observations




Markov Models

 Markov Assumption

n

1torder  p(X) = |[p(XiXi-1)

2nd order




Markov Models

# parameters in
stationary model

* Markov Assumption ) :: “ d-ary variables
15t order p(X) = Hp(Xj|Xj—1) O(d?)
1=1
dev  dxi dxi
no 7t 7
mth order p(X) = Hp(XﬂX@—l,---,Xi—m) O(dm1)
1=1

n-1thorder p(X) = ]][p(XilXi-1,...,X1) O(d")
i=1
= no assumptions — complete (but directed) graph

Homogeneous/stationary Markov model (probabilities of transitioning
from a particular state value to another value doesn't depend on i)



Hidden Markov Models

* Distributions that characterize sequential data with few
parameters but are not limited by strong Markov assumptions.

Observation space O; €{Y1, Yo s Yi!
Hidden states S;€{l, ..., S}



Hidden Markov Models

T T
p(S1,-..,87,01,...,07) = ][] p(O:S) H (S¢|S;—1)

— — t=1

—

15t order Markov assumption on hidden states {S;} t=1, ..., T
(can be extended to higher order).

Note: O, depends on all previous observations {O, 4,...0}



Hidden Markov Models

* Parameters — stationary/homogeneous markov model
(independent of time t)

S S
Initial probabilities .
S - | - T[i (g’" S

Transition probabilities

2

P=ilSe =0 =Py s p({S}1,{O})) =

Emission probabilities p(S1) | [ p(SelSi-1 H (O] St)

— +=2

p(O,=yIS=i) = q; KS —



HMM Example

e The Dishonest Casino
A casino has two die: ]>(0=5lg‘(:>

Fair dice A

P(1) = P(2) =P(3) =P(5)=P(6) =1/6
Loaded dice

P(1) = P(2) = P(3) = P(5) =1/10

P(6) =7 p(oFs)S=1)
Casino player switches back-&-

forth between fair and loaded die
once every 20 turns




HMM Problems

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344
T
5= FI?
QUESTION
e How likely is this sequence, given our model of how the casino
= Works?

e Thisis the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
‘;> e Thisis the DECODING question in HMMs

e How “loaded’” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING guestion in HMMs



HMM Example

e Observed sequence: {O,}i_,

O—O—O—O—O—O—

Y: "
3 0":
=

e Hidden sequence {St}thl or segmentation):

O—O—O—O—D—O—




State Space Representation

* Switch between F and L once every 20 turns (1/20 = 0.05)

0.05
0.95 0.95
0.05
* HMM Parameters
" Initial probs P(S;=L)=0.5=P(S;=F)
Transition probs P(S;=L/F|S., =L/F)=0.95
P(S, = F/L|S,, = L/F) = 0.05
Emission probabilities P(O,=y|S=F)=1/6 v=1,2,3,4,5,6
P(O,=y|S=1)=1/10 y=1,23,4,5

L =1/2 V=6



Three main problems in HMMs

 Evaluation — Given HMM parameters & observation seqn{O,}._,

find p({O;}7_,) prob of observed sequence

* Decoding — Given HMM parameters & observation seqn {O;}._,

find arg max p({St}t {0 ) most pr?bable
sequence of hldden states o (Sl:' 84 10:-- Ot )

S-St
8= ¢,
e Learning — Given HMM with unknown parameters and {O:};—;
observation sequence

find arg m@axp({Ot}g;lw) parameters that maximize

likelihood of observed data



HMM Algorithms

e Evaluation — What is the probability of the observed
sequence? Forward Algorithm

P(SZ:L ’01»- OT)
* Decoding — What is the probability that the third roll was

loaded given the observed sequence? Forward-Backward
Algorithm

— What is the most likely die sequence given the observed

sequence? Viterbi Algorithm Sm; PLS._. S7)0. o1
\--ST

* Learning — Under what parameterization is the observed
sequence most probable? Baum-Welch Algorithm (EM)



Evaluation Problem

Given HMM parameters p(S1), p(St|Si—1), p(O¢|S:) & observation
sequence {0}/, o

find probability of observed sequence
i io i io
p({Ot}le) = Z p({O} 1, {Si}i=1) ? !
T
ZP(Sl)H (St St—1) H (O¢St) &
t=2 t=1

requires summing over all possible hidden state values at all
times — ST exponential # terms! SxSxsx.. $ (T Times)

Instead:  p({O:}i—,) = ZP({Ot}lev St = k)

I

ok Compute recursively




Forward Probability

p({O:}/=1) = ZP({Ot}tT:p St =k) = ZaéJ;
k kT

Compute forward probability of recursively over t

_ S1

k
af = p(O1,...,04 5 = k) Q_.

- 0,.. OuS -k, g"“c“)
._Z\’( \ WSt Introduce S, ; o1

S :(S k\SCh\a)in rule

-5 (0 | Sek) LAk Stz

?\;( LiTe PS .ty Markov assumption
l\/-’-—-_’

= p(OuSi=k) ) ai_1p(S, =k|S;—1 =1)

1 ps i | >




Forward Algorithm

Can compute o,% for all k, t using dynamic programming:

 |Initialize:  o,*=p(0,|S;=k) p(S; = k) for all k

L ee———— e

* |terate:fort=2,..T
= p(0;]S; = k) T abq p(S, = k|S.q =) for all k
i

* Termination: p({O ) =5 ok

k




%%; Decoding Problem 1

o\

 Given HMM parameters p(51), p(St|Si-1), p(O¢|S:) & observation
sequence {O:}i—;

prSy=Lls )
find probability that hidden state at time t was k p(S; = k|{O;}/_,)
=
p(St:k7{Ot};5r:1) — p(017°°°70t75t:kaO't-l-la"'?OT)
o = p(Ol,...,Ot,StZk)p(OH_l,...,OT‘St:k')
(L ; ==
Compute recursively Um\ BX

S1 St-1 St St+1




Backward Probability

p(S; =k, {0 ) =p(O1,...,0: 8 = K)p(Og1, . ..,07|S; = k) = o BF

b pckuond
Compute fQBMEFRj probability BX recurswely over t

5f - = p(0t+17---7OT|St= )
L— -

= Z F(O\f\ w-Un \SFL ¢ Sgmet )
)./ Introduce S,,4

vZF(OW\S“ﬁ \Q Chain rule

< \St‘“ Markov assumption
?w/

> p(S+1 = ilSi = k)p(Or41[Ser1 = )B4




Backward Algorithm

Can compute B¢ for all k, t using dynamic programming:

 Initialize: B*=1 for all k

e |terate:fort=T-1,...,1 /
B = D p(Siy1=1ilS = k)p(Os41|Sis1 = D)6y, forallk
™\ Z T

e Termination: p(S, =k, {0,}L,) = o ;B

—_—

e
p(S: = H{O}y) = p(Se =k {0} )) _ ofpf

s ?(sfk(ifna _ p({O3L,) X, aipi &

ke lﬂ




Most likely state vs. Most likely
sequence

* Most likely state assignment at time t

——

arg max p(Sy = k|{Oy};—) = argmax oy B

E.g. Which die was most likely used by the casino in the third roll given the
observed sequence?

* Most likely assignment of state sequence —
arg max p({St}t 1|{Ot}t 1)

{Se}L
E.g. What was the most I|ker sequence of die rolls used by the casino
given the observed sequence? Xy Plxy)
MLA of x> S O O 035
: of X: o 171 o005
Not the same solution ! MLA of (xy)? 7z © oz
Z| 7 o.3




Decoding Problem 2

* Given HMM parameters p(S;), p(S¢|S:—1), p(O:|S;) & observation
sequence {0},

find most likely assignment of state sequence

org max (ST HONLD) = oeg mas (U5 00TD) s

{St}z—’:l — {St}le
— . _ T—-1 T
= argmax max PSS =k, {5 12740t —1)
— \ - - )
1
Ve
\ikrbi P""A’ Compute recursively

VK _ probability of most likely sequence of states ending at
state S; =k



Viterbi Decoding

{gli;il P({St}thla {Ot}thl) = m?x Vilf

Compute probability V't‘ recursively overt

1
\
Vtk = max p(S: =k, S51,...,5:-1,01,...,04) 4/%
1s-0-s t—1 —
, =\ g_,St'ZrOl"Ot”)
2k pSg=kl St =1) P St . S
zft?t-\ P(O*\S{'k> P( v i S St1 Sy
— . Chain rule ‘

Markov assumption O,

= p(OSt = k) m?Xp(St = k|S;_1 = Z)Vtz_

™~ 4 —



Viterbi Algorithm

Can compute V¥ for all k, t using dynamic programming:
* Initialize:  V;*=p(0,|S;=k)p(S; = k) for all k
* |terate:fort=2,..T
_e ‘/tk — p(Ot|St — k) miaxp(st — k|St_1 — 1,)‘/;‘_ for all k

* Termination: max p({S:}{_1,{0:}{;) = max V}
{St}le k d

Traceback: St = argmax VE

Si—1 = argmax p(Sy|Se—1 = i)V,



Computational complexity

* What is the running time for Forward, Forward-Backward,
Viterbi?

k . O 7
= q E :&t—l Dik
L~ ,I: [—

k O '
By = Zpk,i ;" By
i

k O )
Vi = g maxpig Vi,
1

O(S?T) linear in T instead of O(ST) exponential in T!



Learning Problem
1L J

* Given HMM with unknown parameters § = {{m;}, {p;}, {¢/ }}
and observation sequence O = {0}/, —

find parameters that maximize likelihood of observed data

arg max p({O:}2_,|6) But likelihood doesn't factorize
0 since observations not i.i.d.

hidden variables — state sequence {S;}/{_;

—> EM (Baum-Welch) Algorithm:
E-step — Fix parameters, find expected state assignments
M-step — Fix expected state assignments, update parameters



Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

* E-step — Fix parameters, find expected state assignments

i) = p(S, = i0,0) — B
7;) p§=t_=zl ") D oy 37

Forward-Backward algorithm

~ &ii(t) = p(Si—1= 1, 5¢= 3|0, 0)
e —————
— p(St_l — Z|O’9)p(5t — ja Ota x °7OT|St—1 — 7'7(9)

p(Ot, .« ooy OT|St_1 = 7:, (9)

o
Vit =1) pij ¢;* 3] .

B
—




Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

e E-ste T
P Z 7i(t) = expected # times
— 7i(t) = p(S¢ = 4|0, 0) t=1 in state i

T-1
Y 7(t) = expected # transitions
=t from state i

&ij(t) = p(Si—1=1,5¢= 3|0, 0)

) T—1
Z ¢ (t) = expected # transitions
* M-step =1 from state i to
- T = 5(1)
% 5 gk = S 100, =kYi(t)
1 T .
D; g’:_ll 'fij (t) thl 7z(t)

W= ST



HMMs.. What you should know

Useful for modeling sequential data with few parameters
using discrete hidden states that satisfy Markov assumption

Representation - initial prob, transition prob, emission prob,

State space representation

Algorithms for inference and learning in HMMs

— Computing marginal likelihood of the observed sequence: -~
forward algorithm

— Predicting a single hidden state: forward-backward
— Predicting an entire sequence of hidden states: viterbi v

— Learning HMM parameters: an EM algorithm known as Baum-
Welch



