

Hidden Markov Models

Aarti Singh & Geoff Gordon
Slides courtesy: Eric Xing

Machine Learning 10-701
Apr 21, 2021

MACHINE LEARNING DEPARTMENT

Carnegie Mellon.
School of Computer Science

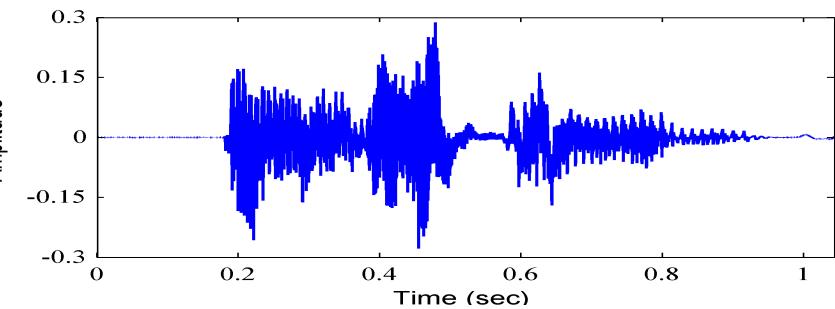
i.i.d to sequential data

- So far we assumed independent, identically distributed data, $\{X_i\}_{i=1}^n \stackrel{iid}{\sim} p(\mathbf{X})$

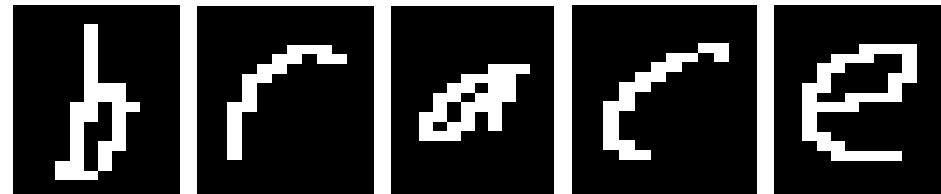
- Sequential data

- Time-series data

- E.g. Speech



- Characters in a sentence



- Base pairs along a DNA strand

Markov Models

$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \dots \rightarrow x_n$

- Joint Distribution

$$\begin{aligned} p(\mathbf{X}) &= p(X_1, X_2, \dots, X_n) \\ &= \underbrace{p(X_1)}_n p(\underbrace{X_2 | X_1}_{\dots}) p(\underbrace{X_3 | X_2, X_1}_{\dots}) \dots p(\underbrace{X_i | X_{i-1}, \dots, X_1}_{\dots}) \\ &= \prod_{i=1}^n p(X_i | X_{i-1}, \dots, X_1) \end{aligned} \quad \text{Chain rule}$$

- Markov Assumption (m^{th} order)

$$p(\mathbf{X}) = \prod_{i=1}^n p(X_i | \underbrace{X_{i-1}, \dots, X_{i-m}}_{\dots})$$

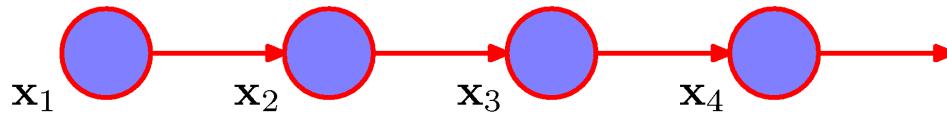
Current observation
only depends on past
 m observations

Markov Models

- Markov Assumption

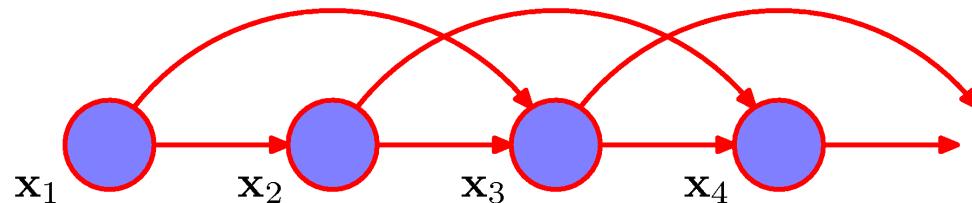
1st order

$$p(\mathbf{X}) = \prod_{i=1}^n p(X_i | X_{i-1})$$



2nd order

$$p(\mathbf{X}) = \prod_{i=1}^n p(X_i | \underbrace{X_{i-1}, X_{i-2}}_{\text{2 previous states}})$$



Markov Models

- Markov Assumption

1st order

$$p(\mathbf{X}) = \prod_{i=1}^n p(X_i | X_{i-1})$$

b *a*
" "

$O(d^2)$

mth order

$$p(\mathbf{X}) = \prod_{i=1}^n p(X_i | X_{i-1}, \dots, X_{i-m})$$

dx₁ *dx₁* *dx₁*
↑ ↑ ↑

$O(d^{m+1})$

n-1th order

$$p(\mathbf{X}) = \prod_{i=1}^n p(X_i | X_{i-1}, \dots, X_1)$$

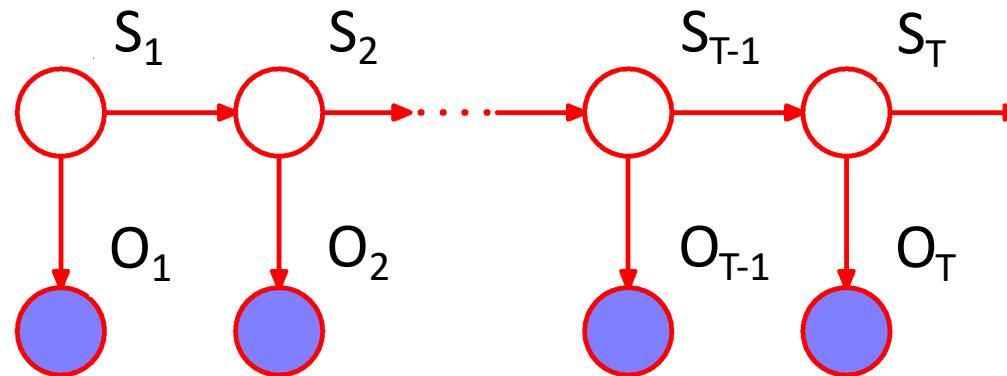
$O(d^n)$

\equiv no assumptions – complete (but directed) graph

Homogeneous/stationary Markov model (probabilities of transitioning from a particular state value to another value doesn't depend on i)

Hidden Markov Models

- Distributions that characterize sequential data with few parameters but are not limited by strong Markov assumptions.



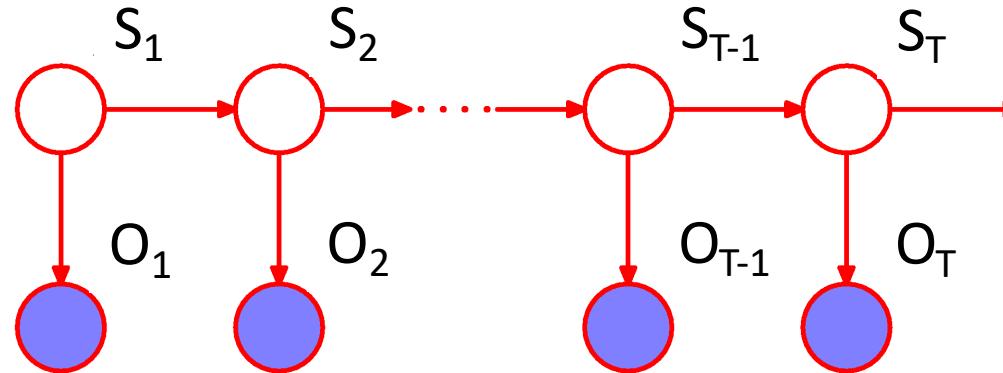
Observation space

$$O_t \in \{y_1, y_2, \dots, y_K\}$$

Hidden states

$$S_t \in \{1, \dots, S\}$$

Hidden Markov Models



$$p(S_1, \dots, S_T, O_1, \dots, O_T) = \underbrace{\prod_{t=1}^T p(O_t | S_t)}_{\text{1st order Markov assumption}} \underbrace{\prod_{t=1}^T p(S_t | S_{t-1})}_{\text{can be extended to higher order}}$$

1st order Markov assumption on hidden states $\{S_t\}$ $t = 1, \dots, T$
(can be extended to higher order).

Note: O_t depends on all previous observations $\{O_{t-1}, \dots, O_1\}$

Hidden Markov Models

- Parameters – stationary/homogeneous markov model (independent of time t)

Initial probabilities

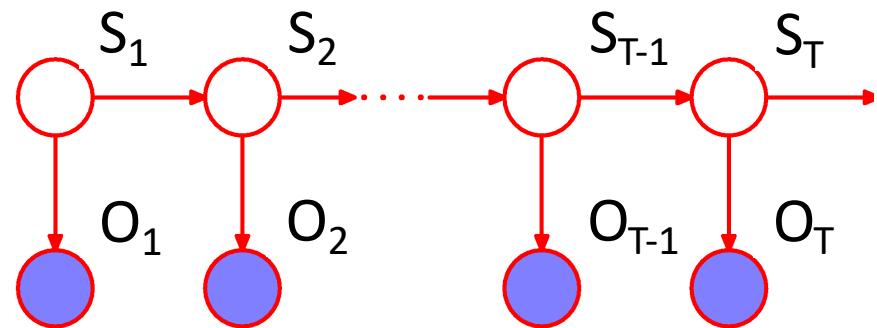
$$p(S_1 = i) = \pi_i \quad i=1..S$$

Transition probabilities

$$p(S_t = j | S_{t-1} = i) = \underline{p_{ij}} \quad S^2$$

Emission probabilities

$$p(O_t = y | S_t = i) = q_i^y \quad \text{KS}$$



$$p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) =$$

$$p(S_1) \prod_{t=2}^T p(S_t | S_{t-1}) \prod_{t=1}^T p(O_t | S_t)$$

HMM Example

- The Dishonest Casino

A casino has two die:

$$P(O=5 | S=F)$$

Fair dice

$$P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$$

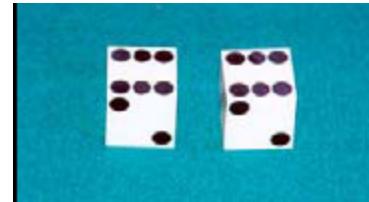
Loaded dice

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

$$P(6) = 1/2$$

$$P(O \neq 5 | S=L)$$

Casino player switches back-&-forth between fair and loaded die once every 20 turns



HMM Problems

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

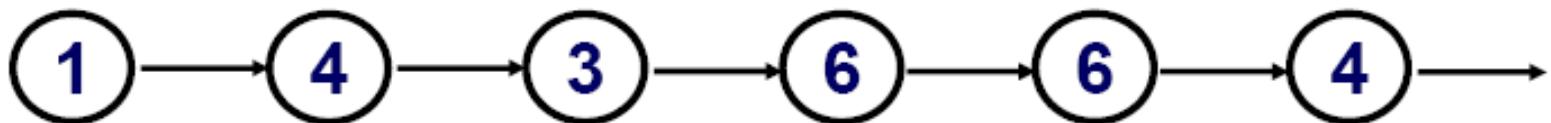
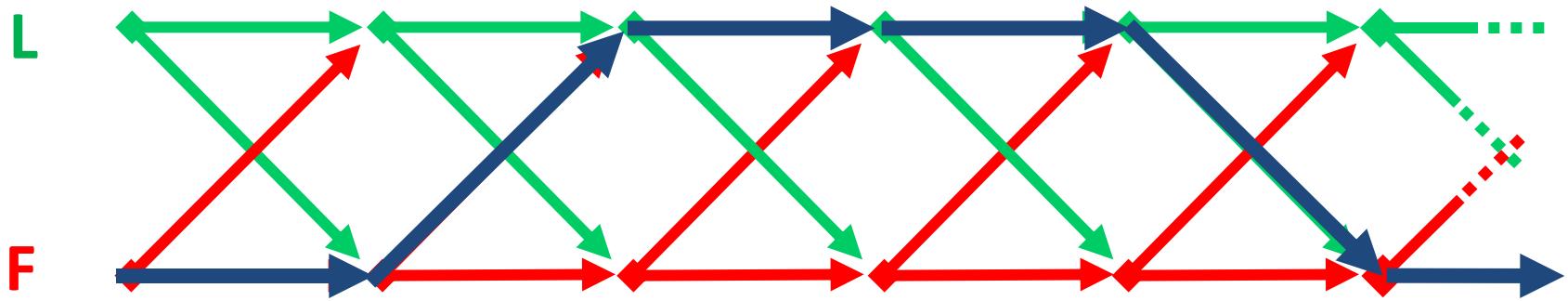
↑
 $S = F/L?$

QUESTION

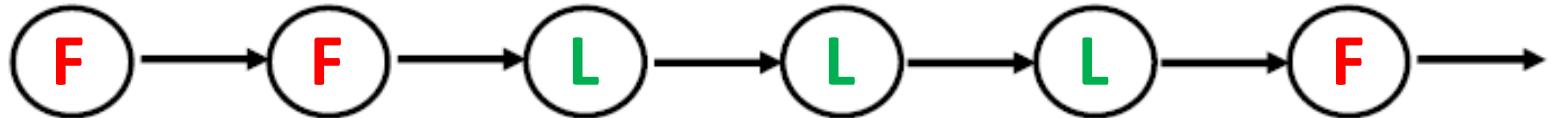
- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs

HMM Example

- Observed sequence: $\{O_t\}_{t=1}^T$

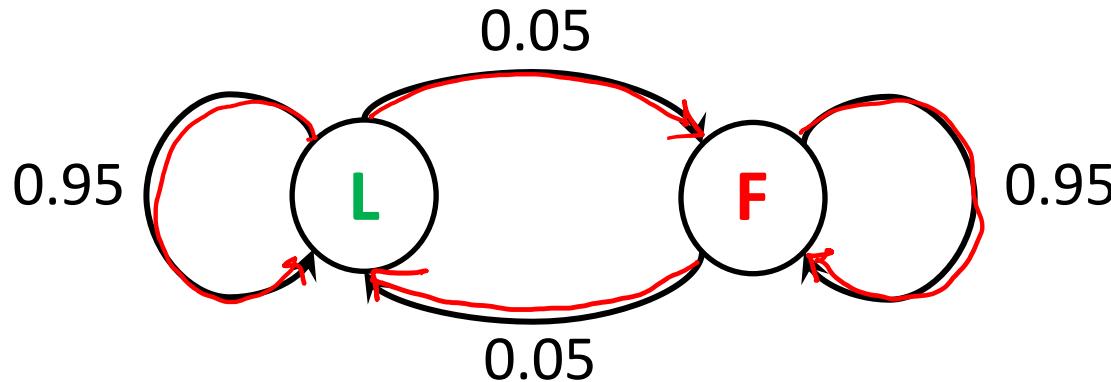


- Hidden sequence $\{S_t\}_{t=1}^T$ (or segmentation):



State Space Representation

- Switch between **F** and **L** once every 20 turns ($1/20 = 0.05$)



- HMM Parameters

Initial probs

$$P(S_1 = L) = 0.5 = P(S_1 = F)$$

Transition probs

$$P(S_t = L/F | S_{t-1} = L/F) = 0.95$$

$$P(S_t = F/L | S_{t-1} = L/F) = 0.05$$

Emission probabilities

$$P(O_t = y | S_t = F) = 1/6 \quad y = 1, 2, 3, 4, 5, 6$$

$$P(O_t = y | S_t = L) = \begin{cases} 1/10 & y = 1, 2, 3, 4, 5 \\ 1/2 & y = 6 \end{cases}$$

Three main problems in HMMs

- **Evaluation** – Given HMM parameters & observation seqn $\{O_t\}_{t=1}^T$

find $\underline{p(\{O_t\}_{t=1}^T)}$ prob of observed sequence

- **Decoding** – Given HMM parameters & observation seqn $\{O_t\}_{t=1}^T$

find $\arg \max_{s_1, \dots, s_T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T)$ most probable

sequence of hidden states

$$\max_{s_1, \dots, s_T} p(S_T = s_T | O_1, \dots, O_T)$$

\vdots
 $s_1 = s_1$

- **Learning** – Given HMM with unknown parameters and $\{O_t\}_{t=1}^T$ observation sequence

find $\arg \max_{\theta} p(\{O_t\}_{t=1}^T | \theta)$ parameters that maximize likelihood of observed data

HMM Algorithms

- **Evaluation** – What is the probability of the observed sequence? **Forward Algorithm**

$$p(S_3 = L | O_1, \dots, O_T)$$

- **Decoding** – What is the probability that the third roll was loaded given the observed sequence? **Forward-Backward Algorithm**
 - What is the most likely die sequence given the observed sequence? **Viterbi Algorithm** $\max_{S_1, \dots, S_T} p(S_1, \dots, S_T | O_1, \dots, O_T)$
- **Learning** – Under what parameterization is the observed sequence most probable? **Baum-Welch Algorithm (EM)**

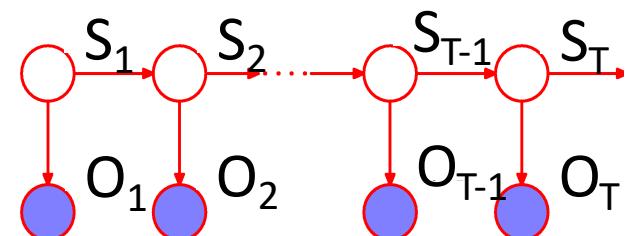
Evaluation Problem

- Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find probability of observed sequence

$$p(\{O_t\}_{t=1}^T) = \sum_{S_1, \dots, S_T} p(\{O_t\}_{t=1}^T, \{S_t\}_{t=1}^T)$$

$$= \sum_{S_1, \dots, S_T} p(S_1) \prod_{t=2}^T p(S_t|S_{t-1}) \prod_{t=1}^T p(O_t|S_t)$$



requires summing over all possible hidden state values at all times – S^T exponential # terms!

$S \times S \times S \times \dots \times S$ (T times)

Instead: $p(\{O_t\}_{t=1}^T) = \sum_k p(\{O_t\}_{t=1}^T, S_T = k)$

α_T^k

Compute recursively

Forward Probability

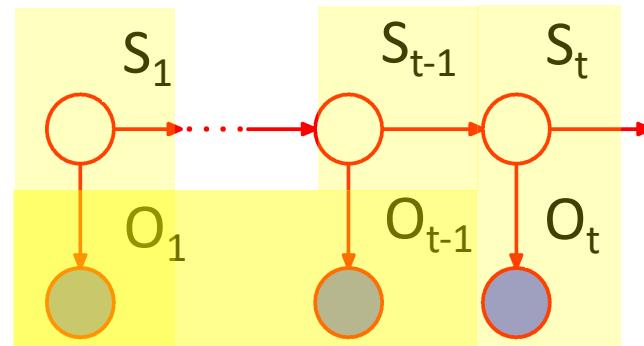
$$p(\{O_t\}_{t=1}^T) = \sum_k p(\{O_t\}_{t=1}^T, S_T = k) = \sum_k \alpha_T^k$$

Compute forward probability α_t^k recursively over t

$$\alpha_t^k := p(O_1, \dots, O_t, S_t = k)$$

$$= \sum_i p(O_1, \dots, O_t, S_t = k, S_{t-1} = i)$$

Introduce S_{t-1}



Chain rule

Markov assumption

$$= \sum_i p(O_t | S_t = k) p(S_t = k | S_{t-1} = i) \cdot p(O_1, \dots, O_{t-1}, S_{t-1} = i)$$

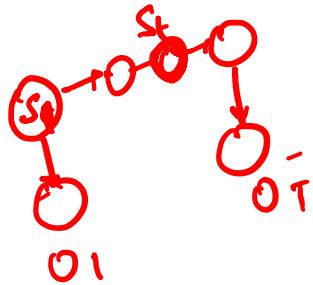
$$= p(O_t | S_t = k) \sum_i \alpha_{t-1}^i p(S_t = k | S_{t-1} = i)$$

Forward Algorithm

Can compute α_t^k for all k, t using dynamic programming:

- Initialize: $\alpha_1^k = p(O_1 | S_1 = k) p(S_1 = k)$ for all k

- Iterate: for $t = 2, \dots, T$
$$\alpha_t^k = p(O_t | S_t = k) \sum_i \alpha_{t-1}^i p(S_t = k | S_{t-1} = i) \quad \text{for all } k$$
- Termination: $p(\{O_t\}_{t=1}^T) = \sum_k \alpha_T^k$



Decoding Problem 1

- Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

$p(S_3 = L | \{O_t\}_{t=1}^T)$

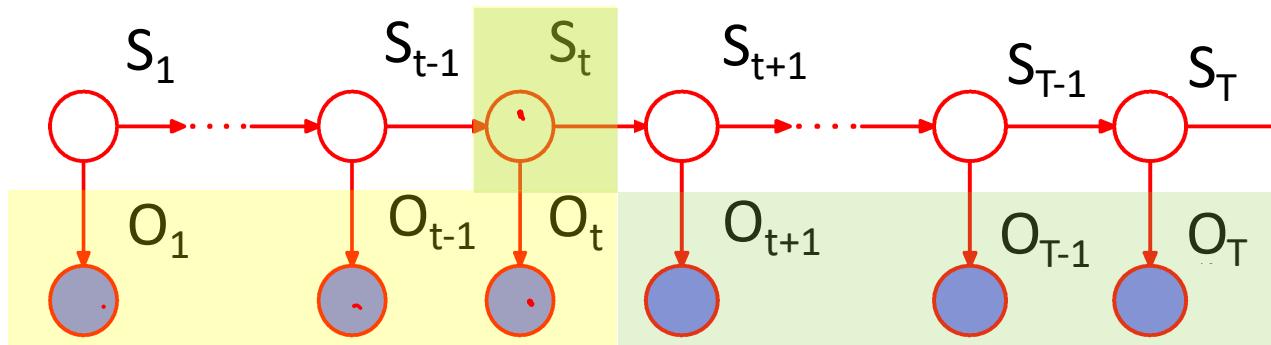
find probability that hidden state at time t was k $p(S_t = k | \{O_t\}_{t=1}^T)$

$$\begin{aligned}
 \underline{p(S_t = k, \{O_t\}_{t=1}^T)} &= p(O_1, \dots, O_t, S_t = k, O_{t+1}, \dots, O_T) \\
 &= p(O_1, \dots, O_t, S_t = k) p(O_{t+1}, \dots, O_T | S_t = k)
 \end{aligned}$$

Compute recursively

$$\alpha_t^k$$

$$\beta_t^k$$



Backward Probability

$$p(S_t = k, \{O_t\}_{t=1}^T) = p(O_1, \dots, O_t, S_t = k)p(O_{t+1}, \dots, O_T | S_t = k) = \alpha_t^k \beta_t^k$$

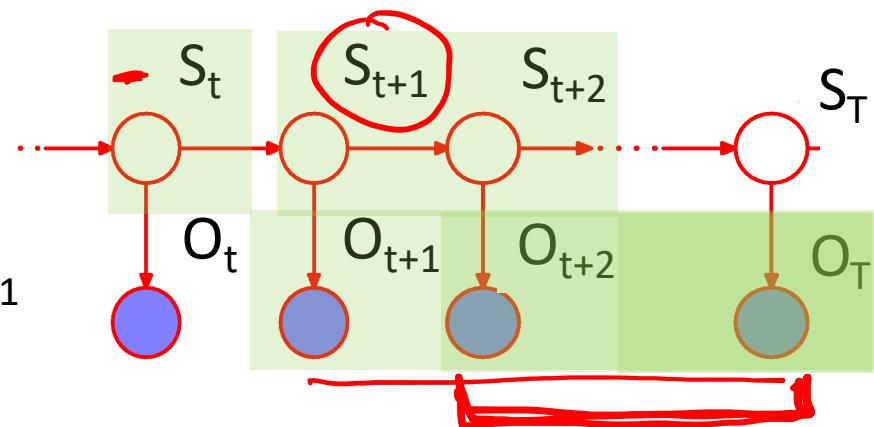
Compute ~~forward~~ ^{backward} probability β_t^k recursively over t

$$\beta_t^k := \frac{p(O_{t+1}, \dots, O_T | S_t = k)}{\sum_i p(O_{t+1}, \dots, O_T | S_t = k, S_{t+1} = i)}$$

Introduce S_{t+1}

Chain rule

Markov assumption



$$= \sum_i p(S_{t+1} = i | S_t = k) p(O_{t+1} | S_{t+1} = i) \beta_{t+1}^i$$

Backward Algorithm

Can compute β_t^k for all k, t using dynamic programming:

- Initialize: $\beta_T^k = 1$ for all k

- Iterate: for $t = T-1, \dots, 1$

$$\beta_{T-1}^k = \sum_i p(S_{T-1} = i | S_T = k) p(O_{T-1} | S_{T-1} = i) \beta_T^i \quad \text{for all } k$$

- Termination: $p(S_t = k, \{O_t\}_{t=1}^T) = \alpha_t^k \beta_t^k$

$$p(S_t = k | \{O_t\}_{t=1}^T) = \frac{p(S_t = k, \{O_t\}_{t=1}^T)}{p(\{O_t\}_{t=1}^T)} = \frac{\alpha_t^k \beta_t^k}{\sum_i \alpha_t^i \beta_t^i}$$

$$\max_{k \in \mathcal{L}, t \in \mathcal{E}} p(S_t = k | \{O_t\}_{t=1}^T)$$

Most likely state vs. Most likely sequence

- Most likely state assignment at time t

$$\arg \max_k p(S_t = k | \{O_t\}_{t=1}^T) = \arg \max_k \alpha_t^k \beta_t^k$$

E.g. Which die was most likely used by the casino in the third roll given the observed sequence?

- Most likely assignment of state sequence

$$\arg \max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T)$$

E.g. What was the most likely sequence of die rolls used by the casino given the observed sequence?

Not the same solution !

MLA of x?
MLA of (x,y)?

x	y	$P(x,y)$
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Decoding Problem 2

- Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$
find most likely assignment of state sequence

$$\begin{aligned} \arg \max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T) &= \arg \max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) \quad \text{/ps03} \\ &= \arg \max_k \max_{\{S_t\}_{t=1}^{T-1}} p(S_T = k, \{S_t\}_{t=1}^{T-1}, \{O_t\}_{t=1}^T) \\ &\quad \underbrace{\qquad\qquad\qquad}_{V_T^k} \end{aligned}$$

Viterbi prob

Compute recursively

V_T^k - probability of most likely sequence of states ending at state $S_T = k$

Viterbi Decoding

$$\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$$

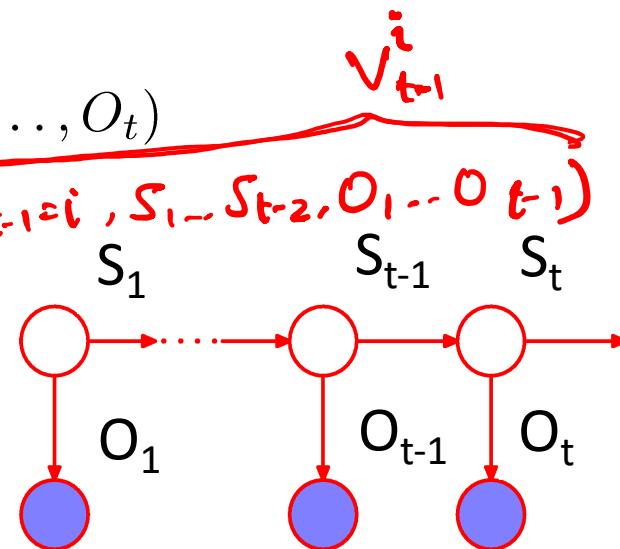
Compute probability V_t^k recursively over t

$$V_t^k := \max_{S_1, \dots, S_{t-1}} p(S_t = k, S_1, \dots, S_{t-1}, O_1, \dots, O_t)$$

$$= \underbrace{\max_{S_1, \dots, S_{t-1}}}_{\text{Chain rule}} \underbrace{p(O_t | S_t = k)}_{\text{.}} \underbrace{p(S_t = k | S_{t-1} = i)}_{\text{.}} \underbrace{p(S_{t-1} = i, S_1, \dots, S_{t-2}, O_1, \dots, O_{t-1})}_{\text{Markov assumption}}$$

Chain rule

Markov assumption



$$= p(O_t | S_t = k) \max_i p(S_t = k | S_{t-1} = i) V_{t-1}^i$$

Viterbi Algorithm

Can compute V_t^k for all k, t using dynamic programming:

- Initialize: $V_1^k = p(O_1 | S_1 = k) p(S_1 = k)$ for all k

- Iterate: for $t = 2, \dots, T$
 $\rightarrow V_t^k = p(O_t | S_t = k) \max_i p(S_t = k | S_{t-1} = i) V_{t-1}^i$ for all k
- Termination: $\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$

Traceback: $S_T^* = \arg \max_k V_T^k$

$S_{t-1}^* = \arg \max_i p(S_{t-1}^* | S_{t-1} = i) V_{t-1}^i$

Computational complexity

- What is the running time for Forward, Forward-Backward, Viterbi?

$$\alpha_t^k = \underbrace{q_k^{O_t}}_{i} \sum \alpha_{t-1}^i \underbrace{p_{i,k}}_{-}$$

$$\beta_t^k = \sum_i p_{k,i} q_i^{O_{t+1}} \beta_{t+1}^i$$

$$V_t^k = q_k^{O_t} \max_i p_{i,k} V_{t-1}^i$$

$O(S^2T)$ linear in T instead of $O(S^T)$ exponential in T !

Learning Problem

- Given HMM with unknown parameters $\theta = \{\{\pi_i\}, \{p_{ij}\}, \{q_i^k\}\}$ and observation sequence $O = \{O_t\}_{t=1}^T$
find parameters that maximize likelihood of observed data

$$\arg \max_{\theta} p(\{O_t\}_{t=1}^T | \theta)$$

hidden variables – state sequence $\{S_t\}_{t=1}^T$

But likelihood doesn't factorize since observations not i.i.d.

→ EM (Baum-Welch) Algorithm:

E-step – Fix parameters, find expected state assignments

M-step – Fix expected state assignments, update parameters

Baum-Welch (EM) Algorithm

- Start with random initialization of parameters
- **E-step** – Fix parameters, find expected state assignments

✓ $\underline{\gamma_i(t)} = p(\underline{S_t = i} | O, \underline{\theta}) = \frac{\alpha_t^i \beta_t^i}{\sum_j \alpha_t^j \beta_t^j}$

Forward-Backward algorithm

✓ $\xi_{ij}(t) = p(\underline{S_{t-1} = i}, \underline{S_t = j} | O, \underline{\theta})$

$$= \frac{p(\underline{S_{t-1} = i} | O, \theta) p(\underline{S_t = j}, O_t, \dots, O_T | S_{t-1} = i, \theta)}{p(O_t, \dots, O_T | S_{t-1} = i, \theta)}$$
$$= \frac{\underline{\gamma_i(t-1)} \ p_{ij} \ q_j^{O_t} \ \beta_t^j}{\underline{\beta_{t-1}^i}} \quad \leftarrow$$

Baum-Welch (EM) Algorithm

- Start with random initialization of parameters

- E-step**

$$\rightarrow \gamma_i(t) = p(\underbrace{S_t = i}_{} | O, \theta)$$

$$\xi_{ij}(t) = p(\underbrace{S_{t-1} = i, S_t = j}_{} | O, \theta)$$

$\sum_{t=1}^T \gamma_i(t)$ = expected # times
in state i

$\sum_{t=1}^{T-1} \gamma_i(t)$ = expected # transitions
from state i

$\sum_{t=1}^{T-1} \xi_{ij}(t)$ = expected # transitions
from state i to j

- M-step**

$$\rightarrow \pi_i = \gamma_i(1)$$

$$\rightarrow q_i^k = \frac{\sum_{t=1}^T \delta_{O_t=k} \gamma_i(t)}{\sum_{t=1}^T \gamma_i(t)}$$

$$\rightarrow p_{ij} = \frac{\sum_{t=1}^{T-1} \xi_{ij}(t)}{\sum_{t=1}^{T-1} \gamma_i(t)}$$

HMMs.. What you should know

- Useful for modeling sequential data with few parameters using discrete hidden states that satisfy Markov assumption
- Representation - initial prob, transition prob, emission prob,
State space representation
- Algorithms for inference and learning in HMMs
 - Computing marginal likelihood of the observed sequence: **✓ forward algorithm**
 - Predicting a single hidden state: **forward-backward ✓**
 - Predicting an entire sequence of hidden states: **viterbi ✓**
 - Learning HMM parameters: an EM algorithm known as **Baum-Welch**