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A PCA algorithms
Applications

Some of these slides are taken from
e Karl Booksh Research group
e Tom Mitchell
e Ron Parr 7






PCA Applications

e Data Visualization
e Data Compression
e Noise Reduction



Data Visualization

Example:

e Given 53 blood and urine samples
(features) from 65 people.

e How can we visualize the measurements?



Data Visualization
e Matrix format (65x53)

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHC
e Al 8.0000 4.8200 14.1000 41.0000 85.0000 29.0000 34.0000
A2 7.3000 5.0200 14.7000 43.0000 86.0000 29.0000 34.0000
$ A3 4.3000 4.4800 14.1000 41.0000 91.0000 32.0000 35.0000
8 A4 7.5000 4.4700 14.9000 45.0000 | 101.0000 33.0000 33.0000
E < A5 7.3000 5.5200 15.4000 46.0000 84.0000 28.0000 33.0000
2 A6 6.9000 4.8600 16.0000 47.0000 97.0000 33.0000 34.0000
— A7 7.8000 4.6800 14.7000 43.0000 92.0000 31.0000 34.0000
A8 8.6000 4.8200 15.8000 42.0000 88.0000 33.0000 37.0000
\_ A9 5.1000 4.7100 14.0000 43.0000 92.0000 30.0000 32.0000
N
Y
Features

Difficult to see the correlations between the features...



Data Visualization

e Spectral format (65 curves, one for each person)
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Data Visualization

e Spectral format (53 pictures, one for each feature)
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Difficult to see the correlations between the features...




Data Visualization

C-LDH

Bi-variate Tri-variate
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How can we visualize the other variables???

... difficult to see in 4 or higher dimensional spaces...




Data Visualization

o Is there a representation better than the coordinate axes?

e Is it really necessary to show all the 53 dimensions?

e ... what if there are strong correlations between the
features?

e How could we find
the smallest subspace of the 53-D space that
keeps the most information about the original data?

e A solution: Principal Component Analysis
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PCA Algorithms



Principal Component Analysis

A / B
T2

PCA:

Orthogonal projection of the data onto a lower-dimension linear
space that...

dmaximizes variance of projected data (purple line)

A minimizes the mean squared distance between
e data point and
e projections (sum of blue lines)
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Principal Component Analysis

Idea:

 Given data points in a d-dimensional space,
project them into a lower dimensional space while
preserving as much information as possible.
e Find best planar approximation of 3D data
e Find best 12-D approximation of 10%-D data

A In particular, choose projection that
minimizes squared error
in reconstructing the original data.
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Principal Component Analysis

Properties:

A PCA Vectors originate from the center of mass.

[ Principal component #1: points in the direction of
the largest variance.

[ Each subsequent principal component
e is orthogonal to the previous ones, and

e points in the directions of the largest
variance of the residual subspace
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PCA algorithm I (sequential)

Given the centered data {xl, ..., X+, compute the principal vectors:

W, = arg max — Z{(W X;)°} 15t PCA vector

[w|=t m

To find w,, maximize the varlance of projection of X

W, =argmax Z{[w (X, -w Wlx,)] } 2nd PCA vector
=1

x PCA reconstruction

To find w,, we maximize
the variance of the
projection in the residual
subspace

18




PCA algorithm I (sequential)

Given wy,..., W,_4, We calculate w, principal vector as before:

Maximize the variance of projection of X

W, =argmax — Z{[W (x ZW wix)I’}
- m “ J Kh PCA vector

x" PCA reconstruction

W A
We maximize the variance
of the projection in the X
residual subspace w, (W, TX) w,

>
w, (W, X) /‘
. / x'=w,(w,"x)+w,(w,"x)

W,

19




PCA algorithm II

(sample covariance matrix)

e Given data {x;, ..., X.,}, compute covariance matrix

ZZEZ(Xi _)—()(X_)—()T where X =
Mo

e PCA basis vectors = the eigenvectors of

e Larger eigenvalue = more important eigenvectors

20



PCA algorithm II

sample covariance matrix

PCA algorithm(X, k): top k eigenvalues/eigenvectors

% X = N x m data matrix,
% ... each data point x; = column vector, i=1..m
1 m
o X =— Xi
X=— le
X € subtract mean x from each column vector x; in X

D, & XXT ... covariance matrix of X

{ A, U; L=y y = elgenvectors/eigenvalues of
A =, > 2 Ay

Return { A, U; }=1 i
% top k PCA components

21




Animation

Power iteration 1: v=Sigma*v; Power iteration 2:
A= Vpcar T¥SIgmMa*vpca,

v=v/sqrt(v'*v);
' =Gj WS * T.
=V SIgma,=3Igma- A*Vpca; *Vecai 7
PCAl - .
v=Sigma,*v;
; v=v/sqrt(v'*v);

Power lteration: 1
22



PCA algorithm III

SVD of the data matrix

Singular Value Decomposition of the centered data matrix X.

m:. number of instances,
N: dimension

xfeatures x samples = UsV'’
X — U S \VAI

significant

X = [x1,...,%Xm] € RV*xm,

noise

significant

23
samples



PCA algorithm III

e Columns of U
e the principal vectors, { u®, ..., u® }
e orthogonal and has unit norm —so UTU =1

e Can reconstruct the data using linear combinations
of { u®, ..., uk }

e Matrix S
e Diagonal
e Shows importance of each eigenvector

e Columns of V7
e The coefficients for reconstructing the samples

24



Applications
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Face Recognition

O Want to identify specific person, based on facial image
 Robust to glasses, lighting,...
— Can't Just use the given 256 x 256 pixels




Applying PCA: Eigenfaces

Method A: Build a PCA subspace for each person and check
which subspace can reconstruct the test image the best

Method B: Build one PCA database for the whole dataset and
then classify based on the weights.

27



Applying PCA: Eigenfaces

 Example data set: Images of faces

e Eigenface approach
[Turk & Pentland], [Sirovich & Kirby]

1 Each face x is ...

e 256 X 256 values (luminance at location)
e X in R26x256  (yiew as 64K dim vector)

dForm X =[ x,, ..., X,, ] centered data
mtx

Q Compute X = XXT
d Problem: X is 64K X 64K ... HUGE!!!

hd

San|eA |eal

9G¢ X 99¢
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Computational Complexity

A Suppose m instances, each of size N

e Eigenfaces: m=500 faces, each of size N=64K
dGiven NxN covariance matrix X, can compute

e all N eigenvectors/eigenvalues in O(N?3)

o first k eigenvectors/eigenvalues in O(k N2)

But if N=64K, EXPENSIVE!
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A Clever Workaround

e Note that m<<64K
e Use L=X"X instead of Z=XXT
e If vis eigenvector of L

then Xv is eigenvector of =

Proof: L v=vyvVv
XTXv=yv

X (XTXV) = X(yv) =y Xv

(XXX Vv = vy (Xv)
2 (Xv) = vy (Xv)

o~
m faces

N
San|eA |eal

30
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Principle Components (Method B)
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Reconstructing... (Method B)

A ... faster if train with...
e only people w/out glasses
e same lighting conditions

32



Shortcomings

[ Requires carefully controlled data:
e All faces centered in frame
e Same size
e Some sensitivity to angle

dMethod is completely knowledge free
e (sometimes this is good!)

e Doesn’t know that faces are wrapped around 3D
objects (heads)

e Makes no effort to preserve class distinctions

33



Happiness subspace (method A)

34



Disgust subspace (method A)
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Facial Expression Recognition
Movies

Surprise

66666666
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Facial Expression Recognition

Movies

28T 2752

17S 58932

sa Faril
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Facial Expression Recognition

28T 2752

17S 58932
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Image Compression



Original Image
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A Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid

O Consider each as a 144-D vector 20



L, error and PCA dim
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PCA compressmn 144D = 6OD




PCA compression: 144D = 16D




16 most important eigenvectors
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PCA compression: 144D = 6D




6 most important eigenvectors
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PCA compression: 144D = 3D




3 most important eigenvectors

rrrrrr
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PCA compression: 144D = 1D




60 most important eigenvectors
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Looks like the discrete cosine bases of JPG!...




2D Discrete Cosine Basis
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Noise Filtering



Noise Filtering

g/
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Noisy image
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Denoised image
using 15 PCA components
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PCA Shortcomings



Problematic Data Set for PCA

PCA doesn’t know labels!



PCA vs Fisher Linear Discriminant

1.5' 8 cu ... '..:°..-
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0.5-- W oae | e e
e PCA maximizes variance, .. . e T

Independent of class e ™ YR AR
= magenta 23 — 0 5
e FLD attempts to separate classes

= green line
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Problematic Data Set for PCA

PCA cannot capture NON-LINEAR structure!

59



PCA Conclusions

Q PCA
e finds orthonormal basis for data
e Sorts dimensions in order of “importance”
e Discard low significance dimensions

A Applications:
e Get compact description
e Remove noise
e Improve classification (hopefully)

O Not magic:
e Doesn’t know class labels
e Can only capture linear variations

[ One of many tricks to reduce dimensionality!

60



Kernel PCA



Kernel PCA

Performing PCA in the feature space

Let X = [x1,...,Xm] € RNXm’
m: number of instances, N: dimension

Lemma




Kernel PCA

m (XTU_) m

u= > L X; = Y. oyX; — N xm
= am 1 = X X [x1,....,xm] €R :

63



Kernel PCA

Proof

m
2u = )\U_, u — 'Z]_ a;X 5
j:

= X?Zu — )\X%Tu

:>X;-F (7}1 k21kak) (Z ;X ]) = )\X,LT (gzla )

:>_ Z Z(X Xk)(xk j)a = A Z(X X])a
" = 19=1

= %KQa = AMKa where K € Rmxm
-~ Ka = m>Ma If K is invertible (strictly pos def)

64



Kernel PCA

 How to use o to calculate the projection of a new sample ¢?

T < T |-
u' 't = ( .Zl Oéij) t = .21 OéjK(Xj, t)
J— J—

Again, we don't need values of xj!
Let K; ; = (o(x;), #(x;))

Where was I cheating? ©

The data should be centered in the feature space, too!
But this is manageable...

Rig = (800 = - 3 60, ox) — - 3 6000 )
k=1 k=1
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Input points before kernel PCA
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http://en.wikipedia.org/wiki/Kernel_principal_component_analysis
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Second component

Output after kernel PCA

The three groups are distinguishable using the
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PCA Theory



Justification of Algorithm II

Let X = [x1,...,%Xm] € RVxXm
N 15 y T ’
Let xe R m: number of instances, N: dimension
ul
1
Let U= | : | € RVXN orthogonal matrix, UUL =1y
ul
N N
y=Ux, x=Uly= ¥ uy,
i=1
M . .
2= 3 wy;, (M<N) ap.pro><|mat|c?n of x
i=1 using M basis vectors only.
2 g2 — 1 & %
e = E{|lx = x|} = = > |[x; — Xjl[|, average error
j=1

GOAL: ,
arg min g2, s.t UTU =1y
69




Justification of Algorithm II

N M
=2 = E{lx—xI"} =E{I X wyi — > wyil*}
i=1 i=1

N N

= E{ Y wyuwuwyl= Y E{y; }
=M1 i=M+1
N
= Y E{(u/x)(x'u;)}
=M1
N

— Z u;-rE{XXT}ui X is centered!

=M1

N

Z u:eru,,;
1=M+1
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Justification of Algorithm II

GOAL: arg min &2

Upr415UN

Use Lagrange-multipliers for the constraints.

N
e _ Z )\Z-(u;-ru,,; —1)

], =
=M1
Y T N T
— Z u; u; — Z Ai(uiu; — 1)
OL

= [22112' — 2)\7;112'] =0
8ui
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Justification of Algorithm II

OL
— [22112' — 2)\1'117;] = 0= Eu,,; — )\7;117;
811z‘
= [u;, \;] = eigenvector/eigenvalue of X.
2 al T al T al
— Z u; Xu; = Z u; A\ u; = Z Aj
i=M+1 i=M-+1 i=M+1

The error €2 is minimal
it Aps41,...An are the smallest eigenvalues of .,
and ups41,...,uy are the corresponding eigenvectors.
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Thanks for the Attention! ©




