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• Karl Booksh Research group 

• Tom Mitchell 

• Ron Parr 
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Motivation 
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• Data Visualization 

• Data Compression 

• Noise Reduction 

PCA Applications 
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Data Visualization 

Example: 

 

• Given 53 blood and urine samples 
(features) from 65 people. 

 

• How can we visualize the measurements? 
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• Matrix format (65x53) 

 H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHCH-MCHC

A1 8.0000 4.8200 14.1000 41.0000 85.0000 29.0000 34.0000 

A2 7.3000 5.0200 14.7000 43.0000 86.0000 29.0000 34.0000 

A3 4.3000 4.4800 14.1000 41.0000 91.0000 32.0000 35.0000 

A4 7.5000 4.4700 14.9000 45.0000 101.0000 33.0000 33.0000 

A5 7.3000 5.5200 15.4000 46.0000 84.0000 28.0000 33.0000 

A6 6.9000 4.8600 16.0000 47.0000 97.0000 33.0000 34.0000 

A7 7.8000 4.6800 14.7000 43.0000 92.0000 31.0000 34.0000 

A8 8.6000 4.8200 15.8000 42.0000 88.0000 33.0000 37.0000 

A9 5.1000 4.7100 14.0000 43.0000 92.0000 30.0000 32.0000 

In
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ce
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Features 

Difficult to see the correlations between the features... 

Data Visualization 
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• Spectral format (65 curves, one for each person) 
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Difficult to compare the different patients... 

Data Visualization 
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Difficult to see the correlations between the features... 

Data Visualization 
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How can we visualize the other variables??? 

 … difficult to see in 4 or higher dimensional spaces... 

Data Visualization 
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• Is there a representation better than the coordinate axes? 

 

• Is it really necessary to show all the 53 dimensions? 

• … what if there are strong correlations between the 
features? 

 

• How could we find  
 the smallest subspace of the 53-D space that 
 keeps the most information about the original data? 

 

• A solution: Principal Component Analysis 

Data Visualization 
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PCA Algorithms 
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Orthogonal projection of the data onto a lower-dimension linear 
space that... 

maximizes variance of projected data (purple line) 
 

minimizes the mean squared distance between  

• data point and  

• projections (sum of blue lines) 

PCA: 

Principal Component Analysis 
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Idea:  

 Given data points in a d-dimensional space,  
project them into a lower dimensional space while 
preserving as much information as possible. 

• Find best planar approximation of 3D data 

• Find best 12-D approximation of 104-D data 

 

 In particular, choose projection that  
   minimizes squared error  
in reconstructing the original data. 

Principal Component Analysis 
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PCA Vectors originate from the center of mass. 

 

Principal component #1: points in the direction of 
the largest variance. 

 

Each subsequent principal component 

• is orthogonal to the previous ones, and  

• points in the directions of the largest 
variance of the residual subspace 

Principal Component Analysis 

Properties: 
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2D Gaussian dataset 



16 

1st PCA axis 
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2nd PCA axis 
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To find w2, we maximize 

the variance of the 

projection in the residual 

subspace 

To find w1, maximize the variance of projection of x 

x’ PCA reconstruction 

Given the centered data {x1, …, xm}, compute the principal vectors: 

1st PCA vector 

2nd PCA vector 

x 

w1 

w 

x’=w1(w1
Tx) 

w 

PCA algorithm I (sequential) 

x-x’ w2 
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We maximize the variance 

of the projection in the 

residual subspace 

Maximize the variance of projection of x 

x’ PCA reconstruction 

Given w1,…, wk-1, we calculate wk principal vector as before: 

kth PCA vector 

w1(w1
Tx) 

w2(w2
Tx) 

x 

w1 

w2 
x’=w1(w1

Tx)+w2(w2
Tx) 

w 

PCA algorithm I (sequential) 
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• Given data {x1, …, xm}, compute covariance matrix   

 

 

 

 

 

• PCA basis vectors = the eigenvectors of  

 

 

• Larger eigenvalue  more important eigenvectors 
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PCA algorithm II  
(sample covariance matrix) 
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PCA algorithm(X, k): top k eigenvalues/eigenvectors 

     % X = N  m data matrix,  

 % … each data point xi = column vector, i=1..m 

•   

• X  subtract mean x from each column vector xi in X 

•    X XT   … covariance matrix of X 

• { i, ui }i=1..N = eigenvectors/eigenvalues of  

 ... 1  2  …  N 

• Return { i, ui }i=1..k 
% top k PCA components 





m

im 1

1
ixx

PCA algorithm II  
(sample covariance matrix) 
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Animation 
v=Sigma*v;     

v=v/sqrt(v'*v); 

) vPCA1  

Power iteration 1:  Power iteration 2:  

 vPCA1
T*Sigma*vPCA1  

Sigma2=Sigma- *vPCA1*vPCA1
T; 

v=Sigma2*v;     

v=v/sqrt(v'*v); 

) vPCA2  
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Singular Value Decomposition of the centered data matrix X. 

Xfeatures  samples = USVT 

X VT S U = 

samples 

significant 

noise 

n
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e noise 
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n
if
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an

t 

sig. 

PCA algorithm III  
(SVD of the data matrix) 
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• Columns of U 

• the principal vectors, { u(1), …, u(k) } 

• orthogonal and has unit norm – so UTU = I 

• Can reconstruct the data using linear combinations 
of { u(1), …, u(k) } 

 

• Matrix S  

• Diagonal 

• Shows importance of each eigenvector 

 

•  Columns of VT  

• The coefficients for reconstructing the samples 

PCA algorithm III  
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Applications 



Want to identify specific person, based on facial image 

 Robust to glasses, lighting,… 

  Can’t just use the given 256 x 256 pixels 

Face Recognition 
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Method A: Build a PCA subspace for each person and check 
which subspace can reconstruct the test image the best  

 

Method B: Build one PCA database for the whole dataset and 
then classify based on the weights. 

Applying PCA: Eigenfaces 
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 Example data set:  Images of faces  

• Eigenface approach  
[Turk & Pentland], [Sirovich & Kirby] 

 Each face x is … 

• 256  256 values (luminance at location)  

• x in 256256    (view as 64K dim vector) 

 Form X = [ x1 , …, xm ] centered data 
mtx 

 Compute   = XXT  

 Problem:  is 64K  64K … HUGE!!! 

Applying PCA: Eigenfaces 
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Suppose m instances, each of size N 

• Eigenfaces: m=500 faces, each of size N=64K 

Given NN covariance matrix , can compute  

• all N eigenvectors/eigenvalues in O(N3) 

• first k eigenvectors/eigenvalues in O(k N2) 

 

But if N=64K, EXPENSIVE! 
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Computational Complexity 



• Note that  m<<64K 
• Use L=XTX instead of =XXT 

• If v is eigenvector of L 

 then Xv is eigenvector of  

 

Proof:       L  v =  v 

             XTX v =  v 

     X (XTX v)  =  X( v) =  Xv 

     (XXT)X v  =   (Xv) 

            (Xv)  =   (Xv) 
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X =  

x1, …, xm 

30 

A Clever Workaround 
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Principle Components (Method B) 



… faster if train with… 

• only people w/out glasses 

• same lighting conditions 
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Reconstructing… (Method B) 



Requires carefully controlled data: 

• All faces centered in frame 

• Same size 

• Some sensitivity to angle 

 

Method is completely knowledge free 

• (sometimes this is good!) 

• Doesn’t know that faces are wrapped around 3D 
objects (heads) 

• Makes no effort to preserve class distinctions 
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Shortcomings 
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Happiness subspace (method A) 
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Disgust subspace (method A) 
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Facial Expression Recognition 
Movies 
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Facial Expression Recognition 
Movies 
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Facial Expression Recognition 
Movies 



Image Compression 
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 Divide the original 372x492 image into patches: 

• Each patch is an instance that contains 12x12 pixels on a grid 

 Consider each as a 144-D vector 

Original Image 
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L2 error and PCA dim 
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PCA compression: 144D ) 60D 
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PCA compression: 144D ) 16D 
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PCA compression: 144D ) 6D 
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PCA compression: 144D ) 3D 
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PCA compression: 144D ) 1D 
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Looks like the discrete cosine bases of JPG!... 

60 most important eigenvectors 



51 http://en.wikipedia.org/wiki/Discrete_cosine_transform 

2D Discrete Cosine Basis 



Noise Filtering 
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x x’ 

U x 

Noise Filtering 
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Noisy image 
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Denoised image  
using 15 PCA components 



PCA Shortcomings 
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PCA doesn’t know labels! 

Problematic Data Set for PCA 
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• PCA maximizes variance, 
independent of class 

 magenta 

• FLD attempts to separate classes 

 green line 

PCA vs Fisher Linear Discriminant 
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PCA cannot capture NON-LINEAR structure! 

Problematic Data Set for PCA 
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 PCA  
• finds orthonormal basis for data 
• Sorts dimensions in order of “importance” 
• Discard low significance dimensions 

 
 Applications: 

• Get compact description 
• Remove noise 
• Improve classification (hopefully) 

 
 Not magic: 

• Doesn’t know class labels 
• Can only capture linear variations 

 
 One of many tricks to reduce dimensionality! 

PCA Conclusions 
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Kernel PCA 
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Performing PCA in the feature space 

Lemma 

Proof: 

Kernel PCA 
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Lemma 

Kernel PCA 
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Proof 

Kernel PCA 
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 How to use  to calculate the projection of a new sample t? 

Where was I cheating?  

 
The data should be centered in the feature space, too! 
But this is manageable...  

Kernel PCA 



66 http://en.wikipedia.org/wiki/Kernel_principal_component_analysis 

Input points before kernel PCA 



67 

The three groups are distinguishable using the 
first component only  

Output after kernel PCA 
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PCA Theory 
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GOAL: 

Justification of Algorithm II 
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x is centered! 

Justification of Algorithm II 
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GOAL: 

Use Lagrange-multipliers for the constraints. 

Justification of Algorithm II 
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Justification of Algorithm II 
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Thanks for the Attention!  


