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Key Concepts in Convex Analysis: Convex Sets
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Key Concepts in Convex Analysis: Convex Functions
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Key Concepts in Convex Analysis: Minimizers
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Key Concepts in Convex Analysis: Strong Convexity
Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖22

convexity

strong convexity

Strong convexity
⇒
6⇐ strict convexity.
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Key Concepts in Convex Analysis: Subgradients
Convexity ⇒ continuity; convexity 6⇒ differentiability (e.g., f (w) = ‖w‖1).

Subgradients generalize gradients for (maybe non-diff.) convex functions:

v is a subgradient of f at x if f (x′) ≥ f (x) + v>(x′ − x)

Subdifferential: ∂f (x) = {v : v is a subgradient of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound non-differentiable case

Notation: ∇̃f (x) is a subgradient of f at x
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Establishing convexity

How to check if f (x) is a convex function?

Verify definition of a convex function.

Check if ∂2f (x)
∂2x

greater than or equal to 0 (for twice differentiable
function).

Show that it is constructed from simple convex functions with
operations that preserver convexity.

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition
minimization
perspective

Reference: Boyd and Vandenberghe (2004)

Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12, 2014 7 / 26



Establishing convexity

How to check if f (x) is a convex function?

Verify definition of a convex function.

Check if ∂2f (x)
∂2x

greater than or equal to 0 (for twice differentiable
function).

Show that it is constructed from simple convex functions with
operations that preserver convexity.

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition
minimization
perspective

Reference: Boyd and Vandenberghe (2004)

Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12, 2014 7 / 26



Unconstrained Optimization

Algorithms:

First order methods (gradient descent, FISTA, etc.)

Higher order methods (Newton’s method, ellipsoid, etc.)

...
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Gradient descent

Problem:
min

x
f (x)

Algorithm:

gt = ∂f (xt)
∂x .

xt = xt−1 − ηgt .

Repeat until convergence.
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Newton’s method

Problem:
min

x
f (x)

Assume f is twice differentiable.

Algorithm:

gt = ∂f (xt)
∂x .

st = H−1gt , where H is the Hessian.

xt = xt−1 − ηst .

Repeat until convergence.

Newton’s method is a special case of steepest descent using Hessian norm.
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Duality
Primal problem:

minx f (x)
subject to gi (x) ≤ 0 i = 1, . . . ,m

hi (x) = 0 i = 1, . . . , p

for x ∈ X.

Lagrangian:

L(x , λ, ν) = f (x) +
m∑

i=1

λigi (x) +

p∑
i=1

νihi (x)

λi and νi are Lagrange multipliers.

Suppose x is feasible and λ ≥ 0, then we get the lower bound:

f (x) ≥ L(x , λ, ν)∀x ∈ X, λ ∈ Rm
+
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Duality

Primal optimal: p∗ = min
x

max
λ≥0,ν

L(x , λ, ν)

Lagrange dual function: min
x

L(x , λ, ν)

This is a concave function, regardless of whether f (x) convex or not. Can
be −∞ for some λ and ν.

Lagrange dual problem: max
λ,ν

L(x , λ, ν) subject to λ ≥ 0

Dual feasible: if λ ≥ 0 and λ, ν ∈ dom L(x , λ, ν).

Dual optimal: d∗ = max
λ≥0,ν

min
x

L(x , λ, ν)
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Duality
Weak duality p∗ ≥ d∗ always holds for convex and nonconvex problems

Strong duality p∗ = d∗ does not hold in general, but usually holds for
convex problems. Strong duality is guaranteed by Slater’s constraint
qualification.

Strong duality holds if the problem is strictly feasible, i.e.

∃x ∈ intD s.t. gi (x) < 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p

Assume strong duality holds and p∗ and d∗ are attained.

p∗ = f (x∗) = d∗ = min
x

L(x∗, λ∗, ν∗) ≤ L(x∗, λ∗, ν∗) ≤ f (x∗) = p∗

We have:

x∗ ∈ arg minx L(x∗, λ∗, ν∗).

λ∗i gi (x
∗) = 0 for i = 1, . . . ,m (complementary slackness).
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Karush-Kuhn-Tucker condition

For a differentiable g(x) and h(x), the KKT conditions are:

gi (x
∗) ≤ 0, hi (x

∗) = 0, primal feasibility

λ∗i ≥ 0, dual feasibility

λ∗i gi (x
∗) = 0, complementary slackness

∂L(x∗, λ∗, ν∗)

∂x
|x=x∗ = 0 Lagrangian stationarity

If x̂ , λ̂, ν̂ satify the KKT for a convex problem, they are optimal.
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Support Vector Machines
Primal problem (hard constraint):

minw
1

2
‖w‖22

subject to yi 〈xi ,w〉 ≥ 1, i = 1, . . . , n

Lagrangian:

L(w , λ) =
1

2
‖w‖22 −

n∑
i=1

λi (yi 〈xi ,w〉 − 1)

Minimizing with respect to w, we have:

∂L(w ,λ)
∂w = 0

w −
∑n

i=1 λiyixi = 0

w =
n∑

i=1

λiyixi
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Support Vector Machines
Plug this back into the Lagrangian:

L(λ) =
n∑

1=1

λi −
1

2

n∑
i=1

n∑
j=1

yiyjλiλjx
>
i xj

Lagrange dual problem is:

maxλ

n∑
1=1

λi −
1

2

n∑
i=1

n∑
j=1

yiyjλiλjx
>
i xj

subject to λi ≥ 0, i = 1, . . . , n
n∑

i=1

λiyi = 0

Since this problem only depends on x>i xj , we can use kernels and learn in
high dimensional space without having to explicitly represent φ(x).
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Support Vector Machines

Primal problem (soft constraint):

minw
1

2
‖w‖22 + C

n∑
i=1

ξi

subject to yi 〈xi ,w〉 ≥ 1− ξi , i = 1, . . . , n

ξi ≥ 0, i = 1 . . . , n
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Support Vector Machines

Lagrange dual problem for the soft constraint:

maxλ

n∑
1=1

λi −
1

2

n∑
i=1

n∑
j=1

yiyjλiλjx
>
i xj (1)

subject to 0 ≤ λi ≤ C , i = 1, . . . , n (2)
n∑

i=1

λiyi = 0 (3)

KKT conditions, for all i :

λi = 0 → yi 〈xi ,w〉 ≥ 1 (4)

0 < λi < C → yi 〈xi ,w〉 = 1 (5)

λi = C → yi 〈xi ,w〉 ≤ 1 (6)
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Sequential Minimal Optimization (Platt, 1998)

An efficient way to solve SVM dual problem. Break a large QP program
into a series of smallest possible QP problems. Solve these small
subproblems analytically.

In a nutshell

Choose two Lagrange multipliers λi and λj .

Optimize the dual problem with respect to these two Lagrange
multipliers, holding others fixed.

Repeat until convergence.

There are heuristics to choose Lagrange multipliers that maximizes the
step size towards the global maximum. The first one is chosen from
examples that violate the KKT condition. The second one is chosen using
approximation based on absolute difference in error values (see Platt
(1998)).
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Sequential Minimal Optimization (Platt, 1998)
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Sequential Minimal Optimization (Platt, 1998)

For any two Lagrange multipliers, the constraints are::

0 < λi , λj < C (7)

yiλi + yjλj = −
∑

k 6=i ,j ykλk = γ (8)

Express λi in terms of λj

λi =
γ − λjyj

yi

Plug this back into our original function. We are then left with a very
simple quadratic problem with one variable λj
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Sequential Minimal Optimization (Platt, 1998)
Solve for the second Lagrange multiplier λj .

If yi 6= yj , the following bounds apply to λj :

L = max(0, λt−1
j − λy−1

i ) (9)

H = min(C ,C + λt−1
j − λy−1

i ) (10)

If yi = yj , the following bounds apply to λj :

L = max(0, λt−1
j + λy−1

i − C ) (11)

H = min(C , λt−1
j + λy−1

i ) (12)

The solution is:

λj =


H ifλj > H
λj ifL ≤ λj ≤ H
L ifλj < L
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Fenchel duality
If a convex conjugate of f (x) is known, the dual function can be easily
derived. The convex conjugate of a function f is:

f ∗(y) = max
x
〈y , x〉 − f (x) (13)

For a generic problem

min
x

f (x)

subject to Ax ≤ b

Cx = d

The dual function is: −f ∗(−A>λ− C>ν)− b>λ− d>ν

There are many functions whose conjugate are easy to compute:

Exponential
Logistic
Quadratic form
Log determinant
...
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Parting notes

Dual formulation is useful.

Give new insights into our problem,

Allow us to develop better optimization methods and use kernel tricks.
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Thank you!

Questions?
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