## 1 Comparison of Machine Learning Algorithms [Jayant, 20 points] In this problem, you will review the important aspects of the algorithms we have learned about in class. For every algorithm listed in the two tables on the next pages, fill out the entries under each column according to the following guidelines. Turn in your completed table with your problem set. [ $\approx \frac{1}{2}$ point per entry] ## **Guidelines:** - 1. **Generative or Discriminative** Choose either "generative" or "discriminative"; you may write "G" and "D" respectively to save some writing. - 2. **Loss Function** Write either the name or the form of the loss function optimized by the algorithm (e.g., "exponential loss"). - 3. **Decision Boundary / Regression Function Shape** Describe the shape of the decision surface or regression function, e.g., "linear". If necessary, enumerate conditions under which the decision boundary has different forms. - 4. Parameter Estimation Algorithm / Prediction Algorithm Name or concisely describe an algorithm for estimating the parameters or predicting the value of a new instance. Your answer should fit in the provided box. - 5. **Model Complexity Reduction** Name a technique for limiting model complexity and preventing overfitting. **Solution:** Completed tables are on the following pages. | Learning<br>Method | Generative or Discriminative? | Loss Function | Decision Boundary | Parameter Estimation Algorithm | Model Complexity Reduction | |--------------------------------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------| | Gaussian Naïve<br>Bayes | Generative | $-\log P(X,Y)$ | Equal variance: linear boundary. Unequal variance: quadratic boundary | Estimate $\hat{\mu}$ , $\hat{\sigma}^2$ , and $P(Y)$ using maximum likelihood | Place prior on parameters and use MAP estimator | | Logistic Regression | Discriminative | $-\log P(Y X)$ | Linear | No closed form estimate. Optimize objective function using gradient descent. | $L_2$ regularization | | Decision Trees | Discriminative | Either $-\log P(Y X)$ or zero-one loss | Axis-aligned partition of feature space | Many algorithms: ID3, CART, C4.5 | Prune tree or limit tree depth | | K-Nearest<br>Neighbors | Discriminative | zero-one loss | Arbitrarily complicated | Must store all training data to classify new points. Choose $K$ using cross validation. | Increase $K$ | | Support Vector<br>Machines (with<br>slack variables,<br>no kernel) | Discriminative | hinge loss: $ 1-y(w^Tx) _+$ | linear (depends on kernel) | Solve quadratic program to find boundary that maximizes margin | Reduce $C$ | | Boosting (with decision stumps) | Discriminative | exponential loss: $\exp\{-yf(x)\}$ | Axis-aligned partition of feature space | AdaBoost | Reduce the number of iterations | Table 1: Comparison of Classification Algorithms | Learning Method | Loss Function | | Regression<br>Function<br>Shape | Parameter Estimation Algorithm | Prediction Algorithm | |------------------------------------------------------|--------------------------|-------|-----------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------| | Linear Regression (assuming<br>Gaussian noise model) | square $(\hat{Y} - Y)^2$ | loss: | Linear | Solve $\beta = (X^T X)^{-1} X^T Y$ | $\hat{Y} = X\beta$ | | Nadaraya-Watson Kernel Regression | square $(\hat{Y} - Y)^2$ | loss: | Arbitrary | Store all training data. Choose kernel bandwidth $h$ using cross validation. | $f(x) = \frac{\sum_{i} y_i K(x_i, x)}{\sum_{j} K(x_j, x)}$ | | Regression Trees | square $(\hat{Y} - Y)^2$ | loss: | Axis-aligned partition of feature space | Many: ID3, CART, C4.5 | Move down tree based on $x$ , predict value at the leaf. | Table 2: Comparison of Regression Algorithms ## 2 Comparison of Machine Learning Algorithms [Jayant, 15 pts] In this problem, you will review the important aspects of the algorithms we have learned about in class since the midterm. For every algorithm listed in the two tables on the next pages, fill out the entries under each column according to the following guidelines. Do not fill out the greyed-out cells. Turn in your completed table with your problem set. ## Guidelines: - 1. **Generative or Discriminative** Choose either "generative" or "discriminative"; you may write "G" and "D" respectively to save some writing. - 2. Loss Function Write either the name or the form of the loss function optimized by the algorithm (e.g., "exponential loss"). For the clustering algorithms, you may alternatively write a short description of the loss function. - 3. **Decision Boundary** Describe the shape of the decision surface, e.g., "linear". If necessary, enumerate conditions under which the decision boundary has different forms. - 4. Parameter Estimation Algorithm / Prediction Algorithm Name or concisely describe an algorithm for estimating the parameters or predicting the value of a new instance. Your answer should fit in the provided box. - 5. **Model Complexity Reduction** Name a technique for limiting model complexity and preventing overfitting. - 6. **Number of Clusters** Choose either "predetermined" or "data-dependent"; you may write "P" and "D" to save time. - 7. Cluster Shape Choose either "isotropic" (i.e., spherical) or "anisotropic"; you may write "I" and "A" to save time. **Solution:** Completed tables are on the following pages. | Learning<br>Method | Generative or Discriminative? | Loss Function | Parameter<br>Estimation<br>Algorithm | Prediction Algorithm | Model Complexity Reduction | |-------------------------|-------------------------------|-------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------| | Bayes Nets | Generative | $-\log P(X,Y)$ | MLE | Variable Elimination | MAP | | Hidden Markov<br>Models | Generative | $-\log P(X,Y)$ | MLE | Viterbi or Forward-Backward, depending on prediction task | MAP | | Neural Networks | Discriminative | Sum-squared error | Back-<br>Propagation | Forward Propagation | Reduce number of hidden layers, regularization, early stopping | Table 1: Comparison of Classification Algorithms | Learning<br>Method | Loss Function | Number of clusters:<br>Predetermined or Data-<br>dependent | Cluster shape: isotropic or anisotropic? | Parameter Estimation Algorithm | |-----------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------| | K-means | Within-class<br>squared distance<br>from mean | Predetermined | Isotropic | K-means | | Gaussian Mixture Models (identity covariance) | $-\log P(X)$ , (equivalent to within-class squared distance from mean) | Predetermined | Isotropic | Expectation Maximization (EM) | | Single-Link Hierarchical Clustering | Maximum distance between a point and its nearest neighbor within a cluster | Data-dependent | Anisotropic | Greedy agglomerative clustering | | Spectral Clustering | Balanced cut | Predetermined | Anisotropic | Run Laplacian Eigenmaps followed by K-means or thresholding eigenvector signs | Table 2: Comparison of Clustering Algorithms