Spectral Clustering

Aarti Singh

Machine Learning 10-701/15-781
Nov 22, 2010

Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg
Data Clustering

- Two different criteria
 - Compactness, e.g., k-means, mixture models
 - Connectivity, e.g., spectral clustering
Graph Clustering

Goal: Given data points X_1, \ldots, X_n and similarities $w(X_i, X_j)$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

Similarity Graph: $G(V, E, W)$
- V – Vertices (Data points)
- E – Edge if similarity > 0
- W – Edge weights (similarities)

Partition the graph so that edges within a group have large weights and edges across groups have small weights.
Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function

\[W_{ij} = e^{\frac{-||x_i - x_j||^2}{2\sigma^2}} \]

Controls size of neighborhood

Data clustering
Partitioning a graph into two clusters

Min-cut: Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum.

\[
\text{cut}(A, B) := \sum_{i \in A, j \in B} w_{ij}
\]

- Easy to solve \(O(VE)\) algorithm
- Not satisfactory partition – often isolates vertices

![Diagram of a graph with partitioned sets A and B, showing ideal cut and cut with lesser weight than the ideal cut.](image)
Partitioning a graph into two clusters

Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum & size of A and B are very similar.

\[\text{cut}(A, B) := \sum_{i \in A, j \in B} w_{ij} \]

Normalized cut:

\[\text{Ncut}(A, B) := \text{cut}(A, B) \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right) \]

\[\text{vol}(A) = \sum_{i \in A} d_i \]

But NP-hard to solve!!
Spectral clustering is a relaxation of these.
Normalized Cut and Graph Laplacian

\[
\text{Ncut}(A, B) := \text{cut}(A, B) \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)
\]

Let \(f = [f_1 \ f_2 \ ... \ f_n]^T \) with \(f_i = \begin{cases}
\frac{1}{\text{vol}(A)} & \text{if } i \in A \\
-\frac{1}{\text{vol}(B)} & \text{if } i \in B
\end{cases} \)

\[
f^T L f = \sum_{ij} w_{ij} (f_i - f_j)^2 = \sum_{i \in A, j \in B} w_{ij} \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)^2
\]

\[
f^T D f = \sum_j d_j f_j^2 = \sum_{i \in A} \frac{d_i}{\text{vol}(A)^2} + \sum_{j \in B} \frac{d_i}{\text{vol}(B)^2} = \frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)}
\]

\[
\text{Ncut}(A, B) = \frac{f^T L f}{f^T D f}
\]
Normalized Cut and Graph Laplacian

\[
\min \text{Ncut}(A, B) = \min \frac{f^T L f}{f^T D f}
\]

where \(f = [f_1 \ f_2 \ ... \ f_n]^T \) with \(f_i = \begin{cases}
\frac{1}{\text{vol}(A)} & \text{if } i \in A \\
-\frac{1}{\text{vol}(B)} & \text{if } i \in B
\end{cases} \)

Relaxation: \(\min \frac{f^T L f}{f^T D f} \quad \text{s.t.} \quad f^T D 1 = 0 \)

Solution: \(f \) – second eigenvector of generalized eval problem

\[
Lf = \lambda D f
\]

Obtain cluster assignments by thresholding \(f \) at 0
Approximation of Normalized cut

\[\text{Ncut}(A, B) := \text{cut}(A, B)(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)}) \]

Let \(f \) be the eigenvector corresponding to the second smallest eval of the generalized eval problem.

\[Lf = \lambda Df \]

Equivalent to eigenvector corresponding to the second smallest eval of the normalized Laplacian \(L' = D^{-1}L = I - D^{-1}W \)

Recover binary partition as follows:

\[
\begin{align*}
 i \in A & \quad \text{if} \quad f_i \geq 0 \\
 i \in B & \quad \text{if} \quad f_i < 0
\end{align*}
\]

Ideal solution

Relaxed solution
Example

Xing et al 2001

input affinity matrix

affinity matrix reordered according to solution vector

the partition according to the solution vector
How to partition a graph into k clusters?
Spectral Clustering Algorithm

Input: Similarity matrix W, number k of clusters to construct
- Build similarity graph
- Compute the first k eigenvectors v_1, \ldots, v_k of the matrix
 \[
 \begin{cases}
 L & \text{for unnormalized spectral clustering} \\
 L' & \text{for normalized spectral clustering}
 \end{cases}
 \]
- Build the matrix $V \in \mathbb{R}^{n \times k}$ with the eigenvectors as columns
- Interpret the rows of V as new data points $Z_i \in \mathbb{R}^k$

$$
\begin{array}{c|ccc}
 & v_1 & v_2 & v_3 \\
\hline
 Z_1 & v_{11} & v_{12} & v_{13} \\
 \vdots & \vdots & \vdots & \vdots \\
 Z_n & v_{n1} & v_{n2} & v_{n3} \\
\end{array}
$$

- Cluster the points Z_i with the k-means algorithm in \mathbb{R}^k.

Dimensionality Reduction
$n \times n \rightarrow n \times k$
Eigenvectors of Graph Laplacian

1st Eigenvector is the all ones vector 1 (if graph is connected)
2nd Eigenvector thresholded at 0 separates first two clusters from last two
k-means clustering of the 4 eigenvectors identifies all clusters
Why does it work?

Data are projected into a lower-dimensional space (the spectral/eigenvector domain) where they are easily separable, say using k-means.

Graph has 3 connected components – first three eigenvectors are constant (all ones) on each component.
Understanding Spectral Clustering

- If graph is connected, first Laplacian eigvec is constant (all 1s)
- If graph is disconnected (k connected components), Laplacian is block diagonal and first k Laplacian eigvecs are:

\[L = \begin{pmatrix}
L_1 & 0 & 0 \\
\vdots & L_2 & 0 \\
0 & 0 & L_3
\end{pmatrix} \]

OR

First three eigenvectors

\[
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{pmatrix}
\]
Understanding Spectral Clustering

• Is all hope lost if clusters don’t correspond to connected components of graph? No!
• If clusters are connected loosely (small off-block diagonal entries), then 1st Laplacian even is all 1s, but second evec gets first cut (min normalized cut)

\[\text{Ncut}(A, B) := \text{cut}(A, B)\left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right) \]

- 1st evec is constant since graph is connected
- Sign of 2nd evec indicates blocks
Why does it work?

Block weight matrix (disconnected graph) results in block eigenvectors:

\[
\begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{bmatrix}
\]

Slight perturbation does not change span of eigenvectors significantly:

\[
\begin{bmatrix}
1 & 1 & .2 & 0 \\
1 & 1 & 0 & .1 \\
.2 & 0 & 1 & 1 \\
0 & .1 & 1 & 1 \\
\end{bmatrix}
\]

Normalized to have unit norm

1st evec is constant since graph is connected

Sign of 2nd evec indicates blocks
Why does it work?

Can put data points into blocks using eigenvectors:

Embedding is same regardless of data ordering:
Understanding Spectral Clustering

• Is all hope lost if clusters don’t correspond to connected components of graph? No!

• If clusters are connected loosely (small off-block diagonal entries), then 1st Laplacian even is all 1s, but second eigvec gets first cut (min normalized cut)

\[\text{Ncut}(A, B) := \text{cut}(A, B)\left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)}\right) \]

• What about more than two clusters? eigenvectors \(f_2, \ldots, f_{k+1} \) are solutions of following normalized cut:

\[\text{Ncut}(A_1, \ldots, A_k) = \sum_{i=1}^{k} \frac{\text{cut}(A_i, \bar{A}_i)}{\text{vol}(A_i)} \]

Demo: http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html
k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.

Both perform same

Spectral clustering is superior
Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.
Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.
Examples

Ng et al 2001

squiggles, 4 clusters

nips, 8 clusters
Examples (Choice of k)

Ng et al 2001
Some Issues

- Choice of number of clusters k

 Most stable clustering is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues)

$$\Delta_k = \left| \lambda_k - \lambda_{k-1} \right|$$
Some Issues

- Choice of number of clusters k
- Choice of similarity
 - choice of kernel
 - for Gaussian kernels, choice of σ

![Heatmap and line graphs comparing good and poor similarity measures](attachment:image.png)
Some Issues

- Choice of number of clusters k
- Choice of similarity
 - choice of kernel
 - for Gaussian kernels, choice of σ
- Choice of clustering method – k-way vs. recursive bipartite
Spectral clustering summary

- Algorithms that cluster points using eigenvectors of matrices derived from the data
- Useful in hard non-convex clustering problems
- Obtain data representation in the low-dimensional space that can be easily clustered
- Variety of methods that use eigenvectors of unnormalized or normalized Laplacian, differ in how to derive clusters from eigenvectors, k-way vs repeated 2-way
- Empirically very successful