

Learning Theory

Aarti Singh

Machine Learning 10-315
Apr 20, 2022

Slides courtesy: Carlos Guestrin

MACHINE LEARNING DEPARTMENT



Learning Theory

- We have explored **many** ways of learning from data
- But...
 - Can we certify how good is our classifier, really?
 - How much data do I need to make it “good enough”?

PAC Learnability

- True function space, F
- Model space, H

F is **PAC Learnable** by a learner using H if

there exists a learning algorithm s.t. for all functions in F , for all distributions over inputs, for all $0 < \varepsilon, \delta < 1$, with probability $> 1-\delta$, the algorithm outputs a model $h \in H$ s.t. $\text{error}_{\text{true}}(h) \leq \varepsilon$ in time and samples that are polynomial in $1/\varepsilon, 1/\delta$.

A simple setting

- Classification
 - m i.i.d. data points
 - **Finite** number of possible classifiers in model class (e.g., dec. trees of depth d)
- Lets consider that a learner finds a classifier h that gets zero error in training
 - $\text{error}_{\text{train}}(h) = 0$
- What is the probability that h has more than ε true (= test) error?
 - $\text{error}_{\text{true}}(h) \geq \varepsilon$

Even if h makes zero errors in training data, may make errors in test

How likely is a bad classifier to get m data points right?

- Consider a bad classifier h i.e. $\text{error}_{\text{true}}(h) \geq \varepsilon$
- Probability that h gets one data point right
 $\leq 1 - \varepsilon$
- Probability that h gets m data points right
 $\leq (1 - \varepsilon)^m$

How likely is a learner to pick a bad classifier?

- Usually there are many (say k) bad classifiers in model class h_1, h_2, \dots, h_k s.t. $\text{error}_{\text{true}}(h_i) \geq \varepsilon \quad i = 1, \dots, k$
- Probability that learner picks a bad classifier = Probability that some bad classifier gets 0 training error
 $\text{Prob}(h_1 \text{ gets 0 training error OR}$
 $h_2 \text{ gets 0 training error OR } \dots \text{ OR}$
 $h_k \text{ gets 0 training error})$
 $\leq \text{Prob}(h_1 \text{ gets 0 training error}) +$
 $\text{Prob}(h_2 \text{ gets 0 training error}) + \dots +$
 $\text{Prob}(h_k \text{ gets 0 training error})$
 $\leq k (1-\varepsilon)^m$

Union
bound

Loose but
works

How likely is a learner to pick a bad classifier?

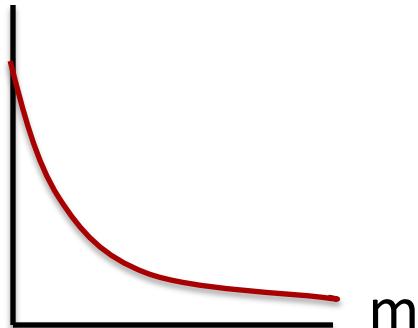
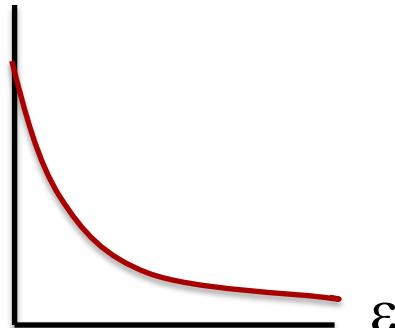
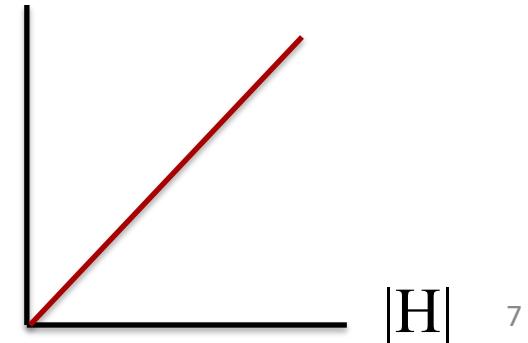
- Usually there are many many (say k) bad classifiers in the class

$$h_1, h_2, \dots, h_k \quad \text{s.t. } \text{error}_{\text{true}}(h_i) \geq \varepsilon \quad i = 1, \dots, k$$

- Probability that learner picks a bad classifier

$$\leq k (1-\varepsilon)^m \leq |H| (1-\varepsilon)^m \leq |H| e^{-\varepsilon m}$$

↗ Size of model class



PAC (Probably Approximately Correct) bound

- **Theorem [Haussler'88]:** Model class H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned classifier h that gets 0 training error:

$$P(\text{error}_{true}(h) \geq \varepsilon) \leq |H|e^{-m\varepsilon} = \delta$$

- Equivalently, with probability $\geq 1 - \delta$
 $\text{error}_{true}(h) \leq \varepsilon$

Important: PAC bound holds for all h with 0 training error, but doesn't guarantee that algorithm finds best h !!!

Using a PAC bound

$$|H|e^{-m\epsilon} = \delta$$

- Given ϵ and δ , yields sample complexity

$$\text{\#training data, } m = \frac{\ln |H| + \ln \frac{1}{\delta}}{\epsilon}$$

- Given m and δ , yields error bound

$$\text{error, } \epsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

Poll

Assume m is the minimum number of training examples sufficient to guarantee that with probability $1 - \delta$ a consistent learner using model class H will output a classifier with true error at worst ϵ .

Then a second learner that uses model space H' will require $2m$ training examples (to make the same guarantee) if $|H'| = 2|H|$.

- A. True
- B. False

If we double the number of training examples to $2m$, the error bound ϵ will be halved.

- C. True
- D. False

Limitations of Haussler's bound

- Only consider classifiers with 0 training error
 h such that zero error in training, $\text{error}_{\text{train}}(h) = 0$
- Dependence on size of model class $|H|$

$$m = \frac{\ln |H| + \ln \frac{1}{\delta}}{\epsilon}$$

what if $|H|$ too big or H is continuous (e.g. linear classifiers)?

PAC bounds for finite model classes

H - Finite model class

e.g. decision trees of depth k

histogram classifiers with binwidth h

With probability $\geq 1-\delta$,

1) For all $h \in H$ s.t. $\text{error}_{\text{train}}(h) = 0$,

$$\text{error}_{\text{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

Haussler's bound

What if our classifier does not have zero error on the training data?

- A learner with **zero** training errors may make mistakes in test set
- What about a learner with $error_{train}(h) \neq 0$ in training set?
- The error of a classifier is like estimating the parameter of a coin!

$$error_{true}(h) := P(h(X) \neq Y) \quad \equiv \quad P(H=1) =: \theta$$

$$error_{train}(h) := \frac{1}{m} \sum_i \mathbf{1}_{h(X_i) \neq Y_i} \quad \equiv \quad \frac{1}{m} \sum_i Z_i =: \hat{\theta}$$

Hoeffding's bound for a single classifier

- Consider m i.i.d. flips x_1, \dots, x_m , where $x_i \in \{0,1\}$ of a coin with parameter θ . For $0 < \varepsilon < 1$:

$$P \left(\left| \theta - \frac{1}{m} \sum_i x_i \right| \geq \varepsilon \right) \leq 2e^{-2m\varepsilon^2}$$

- Central limit theorem:

Hoeffding's bound for a single classifier

- Consider m i.i.d. flips x_1, \dots, x_m , where $x_i \in \{0,1\}$ of a coin with parameter θ . For $0 < \epsilon < 1$:

$$P \left(\left| \theta - \frac{1}{m} \sum_i x_i \right| \geq \epsilon \right) \leq 2e^{-2m\epsilon^2}$$

- For a single classifier h

$$P (|\text{error}_{true}(h) - \text{error}_{train}(h)| \geq \epsilon) \leq 2e^{-2m\epsilon^2}$$

Hoeffding's bound for $|H|$ classifiers

- For each classifier h_i :

$$P(|\text{error}_{\text{true}}(h_i) - \text{error}_{\text{train}}(h_i)| \geq \epsilon) \leq 2e^{-2m\epsilon^2}$$

- What if we are comparing $|H|$ classifiers?

Union bound

- **Theorem:** Model class H finite, dataset D with m i.i.d. samples, $0 < \epsilon < 1$: for any learned classifier $h \in H$:

$$P(|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \geq \epsilon) \leq 2|H|e^{-2m\epsilon^2} \leq \delta$$

Important: PAC bound holds for all h , but doesn't guarantee that algorithm finds best h !!!

Summary of PAC bounds for finite model classes

With probability $\geq 1-\delta$,

- 1) For all $h \in H$ s.t. $\text{error}_{\text{train}}(h) = 0$,

$$\text{error}_{\text{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

Haussler's bound

- 2) For all $h \in H$

$$|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$$

Hoeffding's bound

PAC bound and Bias-Variance tradeoff

$$P(|\text{error}_{true}(h) - \text{error}_{train}(h)| \geq \epsilon) \leq 2|H|e^{-2m\epsilon^2} \leq \delta$$

- Equivalently, with probability $\geq 1 - \delta$

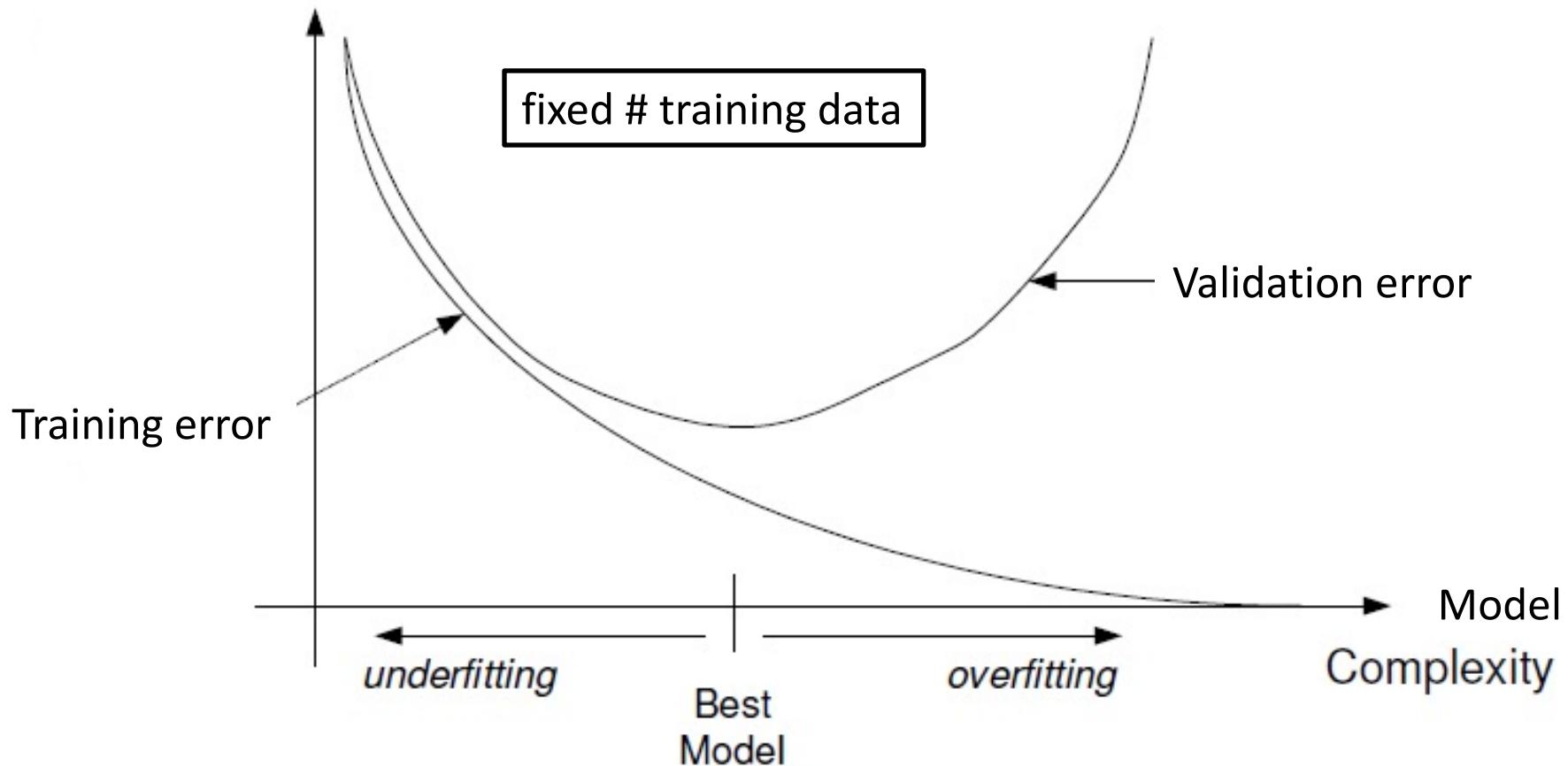
$$\text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$$

- Fixed m

Model class		
complex	small	large
simple	large	small

Training vs. Test Error

With prob $\geq 1 - \delta$, $\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$



What about the size of the model class?

- Sample complexity

$$2|H|e^{-2m\epsilon^2} \leq \delta$$

$$m = \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$$

- How large is the model class?
 - Number of binary decision trees of depth $k = 2^{2^k}$
 m is exponential in depth k
BUT given m points, decision tree can't get too big
 - Number of binary decision trees with k leaves = 2^k
 m is linear in number of leaves k

What did we learn from decision trees?

- Moral of the story:

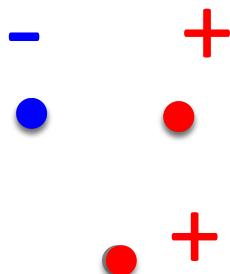
Complexity of learning not measured in terms of size of model space, but in *number of points* that can be correctly classified

Rademacher Complexity

- Measure complexity by how accurately a model space can match a random labeling of the data.

For each data point i , draw random label

$$\sigma_i \quad \text{s.t.} \quad P(\sigma_i = +1) = \frac{1}{2} = P(\sigma_i = -1)$$



Then empirical Rademacher complexity of H is

$$\hat{R}_m(H) = \mathbb{E}_\sigma \left[\sup_{h \in H} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i h(X_i) \right) \right]$$

Max correlation possible with random labels

Rademacher Bounds

- With probability $\geq 1-\delta$,

$$\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \hat{R}_m(H) + 3\sqrt{\frac{\log(2/\delta)}{m}}$$

where empirical Rademacher complexity of H

$$\hat{R}_m(H) = \mathbb{E}_\sigma \left[\sup_{h \in H} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i h(X_i) \right) \right]$$

is purely data-dependent.

Finite model class

- Rademacher complexity can be upper bounded in terms of model class size $|H|$:

$$\hat{R}_m(H) \leq \sqrt{\frac{2 \ln |H|}{m}}$$

- Often Rademacher bounds are significantly better

Summary of PAC bounds

With probability $\geq 1-\delta$,

1) for all $h \in H$ s.t. $\text{error}_{\text{train}}(h) = 0$,

$$\text{error}_{\text{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

Finite hypothesis space

2) for all $h \in H$,

$$|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$$

3) For all $h \in H$,

$$|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = \widehat{R}_m(H) + 3\sqrt{\frac{\log(2/\delta)}{m}}$$

Infinite hypothesis space