
Support Vector Machines
- Dual formulation and Kernel

Trick

Aarti Singh

Machine Learning 10-315
Mar 28, 2022

SVM summary so far

2

n training points (x1, …, xn)
d features xj is a d-dimensional vector

Hard-margin:

Soft-margin:

w
.x

+
b

=
0

min w.w + C Σξjw,b,{ξj}

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

SVM primal vs dual

• Convex quadratic program – quadratic objective, linear
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)

3

w – weights on features (d-dim problem)

n training points (x1, …, xn)
d features xj is a d-dimensional vector

Hard-margin:
Primal problem

w
.x

+
b

=
0

SVM primal vs dual

4

w – weights on features (d-dim problem)

n training points (x1, …, xn)
d features xj is a d-dimensional vector

Hard-margin:
Primal problem

Dual problem

w
.x

+
b

=
0

a – weights on data points (n-dim problem)

Dual SVM: Sparsity of dual solution

5

w
.x

+
b

=
0

Only few ajs can be
non-zero : where
constraint is active and
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0 Complementary
slackness implies

Dual SVM – linearly separable
(aka hard margin) case

Dual problem is also QP
Solution gives ajs

6

Use any one of support vectors with
ak>0 to compute b since constraint is
tight (w.xk + b)yk = 1

Dual SVM – non-separable case

7

• Primal problem:

• Dual problem:
Lagrange
Multipliers

,{ξj}

,{ξj} L(w, b, ⇠,↵, µ)

Dual SVM – non-separable case

8

Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0

So why solve the dual SVM?

• There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!

9

Separable using higher-order features

10

x1

x2

r = √x12+x22

q

x1

x1

x 1
2

Polynomial features f(x)

11

m – input features d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms

Dual formulation only depends on
dot-products, not on w!

12

Φ(x) – High-dimensional feature space, but never need it explicitly as long
as we can compute the dot product fast using some Kernel K

Dot Product of Polynomial features

13

d=1

d=2

d

The Kernel Trick!

14

• Never represent features explicitly
– Compute dot products in closed form

• Constant-time high-dimensional dot-products for many
classes of features

Common Kernels

15

• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders – recall
series expansion of exp)

• Sigmoid

Mercer Kernels

16

What functions are valid kernels that correspond to feature
vectors j(x)?

Answer: Mercer kernels K
• K is continuous
• K is symmetric
• K is positive semi-definite, i.e. xTKx ≥ 0 for all x

Ensures optimization is concave maximization

Overfitting

17

• Huge feature space with kernels, what about
overfitting???
– Maximizing margin leads to sparse set of support

vectors
– Some interesting theory says that SVMs search for

simple hypothesis with large margin
– Often robust to overfitting

What about classification time?

18

• For a new input x, if we need to represent F(x), we are in trouble!
• Recall classifier: sign(w.F(x)+b)

• Using kernels we are cool!

SVMs with Kernels

19

• Choose a set of features and kernel function
• Solve dual problem to obtain support vectors ai

• At classification time, compute:

Classify as

SVMs with Kernels
• Iris dataset, 2 vs 13, Linear Kernel

20

SVMs with Kernels
• Iris dataset, 1 vs 23, Polynomial Kernel degree 2

21

SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel

22

SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel

23

SVMs with Kernels
• Chessboard dataset, Gaussian RBF kernel

24

SVMs with Kernels
• Chessboard dataset, Polynomial kernel

25

USPS Handwritten digits

26

Kernels in Logistic Regression

27

• Define weights in terms of features:

• Derive simple gradient descent rule on ai

yi

SVMs vs. Logistic Regression

28

SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional
features with
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of
output

“Margin” Real probabilities

29

Can we kernelize linear regression?

30

Linear (Ridge) regression
b�MAP = (ATA+ �I)�1ATY

Recall

Hence ATA is a p x p matrix whose entries denote the (sample)
correlation between the features

NOT inner products between the data points – the inner product
matrix would be AAT which is n x n (also known as Gram matrix)

Using dual formulation, we can write the solution in terms of AAT

31

Kernelized ridge regression

Using dual, can re-write solution as:

How does this help?
• Only need to invert n x n matrix (instead of p x p or m x m)
• More importantly, kernel trick!

AAT involves only inner products between the training points
BUT still have an extra AT

Recall the predicted label is

XAT contains inner products between test point X and training points!

b�MAP = (ATA+ �I)�1ATY

b� = AT (AAT + �I)�1Y

b� = AT (AAT + �I)�1Y

32

Kernelized ridge regression

Using dual, can re-write solution as:

How does this help?
• Only need to invert n x n matrix (instead of p x p or m x m)
• More importantly, kernel trick!

where

Work with kernels, never need to write out the high-dim vectors

KX(i) = ���(X) · ���(Xi)

K(i, j) = ���(Xi) · ���(Xj)

b�MAP = (ATA+ �I)�1ATY

b� = AT (AAT + �I)�1Y

bfn(X) = KX(K+ �I)�1Y

Ridge Regression with (implicit) nonlinear features !

f(X) = �(X)�

KX(i) = ���(X) · ���(Xi)

What you need to know
• Maximizing margin
• Derivation of SVM formulation
• Slack variables and hinge loss
• Relationship between SVMs and logistic regression

– 0/1 loss
– Hinge loss
– Log loss

• Dual SVM formulation
– Easier to solve when dimension high d > n
– Kernel Trick

33

