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SVM summary so far

n training points (Xq, o) X, + 5
d features X; is a d-dimensional vector ¥ af =
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SVM primal vs dual

n training points (Xq, o) Xp) S
d features X; is a d-dimensional vector ¥ .
+ & t f
Hard-margin: minimizey , sw.w .
Primal problem (w.xj + b) y; > 1, Vj i

w - weights on features (d-dim problem)

* Convex quadratic program — quadratic objective, linear
constraints

* But expensive to solve if d is very large
e Often solved in dual form (n-dim problem)



SVM primal vs dual

n training points (Xq, o) Xp) S
d features X; is a d-dimensional vector ¥ .
+ & t ..,_Q
Hard-margin: minimizey , sw.w ) ;
Primal problem (w.xj + b) y; > 1, Vj i

w - weights on features (d-dim problem)

Dual problem maximizeq > ; o — %Zz,] QY Y XX
2. iyi = 0
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o - weights on data points (n-dim problem)



Dual SVM: Sparsity of dual solution
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Dual SVM - linearly separable
(aka hard margin) case

C 1
MaxXimilIZEy ZZ Q; — 5 Zz,j Q;0GY;Y XX

> 0y; = 0

87 Z O
Dual problem is also QP W= ) yiX;
Solution gives os > i

b=y — W.Xp
Use any one of support vectors with for any k where oy, > 0

o, >0 to compute b since constraint is
tight (w.x, + b)y, =1



Dual SVM — non-separable case

* Primal problem:

minimizey, ) swW.w + C' Y, &;

(wx;+b)y; >1—§, Vj &
§; >0, Vj tHj
Lagrange
* Dual problem: Multipliers
maxanu minW,b,{Ej} L(W7 b? fa ., /L)
st.a; >0 Vg

pij >0 Vj



Dual SVM — non-separable case

L 1
MaxXimizZeq Zz Q; — 5 Zz,] Q0 5YY XK. X

2 &y; = O
=iz
comes from 8_L — 0 Lntuition: :
O It C->eo, recover hard-margin SVM
Dual problem is also QP W = Z QY X
: : 1
: >
Solution gives as b=y, — W.X,
for any k where C' > ap. > 0




So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!



Separable using higher-order features
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Polynomial features ¢(x)

m — input features d — degree of polynomial
— d —1)]
num. terms = d+m-—1 :( T m ) ~ m
d d'(m —1)!
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Dual formulation only depends on
dot-products, not on w!

_ 1
MaXxXimiZeqy ZZ Q; — 5 Zz,] Q05 YY XX

—
> ioyy; =0
CZCYZ'ZO

U

maximizeq ; a; — % > i 5 oYy K (X, X5)
*
K(x;,x;) = P(x;) - P(x5)

2.y = 0
CZ(XZ'ZO

d(x) — High-dimensional feature space, but never need it explicitly as long

as we can compute the dot product fast using some Kernel K ,



Dot Product of Polynomial features

d(x) = polynomials of degree exactly d
o] -lE
X = 7Z =
i) V)
d=1 P(x)-P(z) = [ 1 ][ “1 ] = r121+ 2020 = X7

L2 <2

az%z% + a:%z% + 2L1XH2125

z 2%
d=2 d(x) - -P(z) = { V2x125 } ~ [ V22122 ]
z5 25
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(x - 2)?

d oKx) ok =Kkxz) = (x-2)°
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The Kernel Trick!

maximizea Y a; — 5 X o yiyi K (x4, %)
K(x;,x;) = P(x;) - P(x5)

>iaiy; = 0
CZO(Z'>O

* Never represent features explicitly
— Compute dot products in closed form

e Constant-time high-dimensional dot-products for many
classes of features
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Common Kernels

Polynomials of degree d

K(u,v) = (u-v)“
Polynomials of degree up to d
K(u,v) = (u-v+1)“

Gaussian/Radial kernels (polynomials of all orders — recall
series expansion of exp)

K(u,v) = exp (_”“—""2)

202
Sigmoid
K(u,v) =tanh(nu-v +v)
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Mercer Kernels

What functions are valid kernels that correspond to feature
vectors ¢(x)?

Answer: Mercer kernels K

* Kis continuous

* Kis symmetric

* Kis positive semi-definite, i.e. x"Kx > 0 for all x

d

Ensures optimization is concave maximization
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Overfitting

* Huge feature space with kernels, what about
overfitting???

— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting



What about classification time?

 For anew input x, if we need to represent ®(x), we are in trouble!

e Recall classifier: sign(w.®(x)+b)

W =) oy D(x;)
i

b=y — W.P(xg)

for any k where C > a5 > 0

e Using kernels we are cool!

K(u,v) =®(u) - d(v)
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SVMs with Kernels

e Choose a set of features and kernel function

* Solve dual problem to obtain support vectors o

* At classification time, compute:

w-P(x) = Z oy K (%, %;)

b=uyr— > oy K(xp,x;)

{
for any k where C > ap. > 0

m sign (w - P(x) + b)
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SVMs with Kernels

* |ris dataset, 2 vs 13, Linear Kernel




SVMs with Kernels

Iris dataset, 1 vs 23, Polynomial Kernel degree 2
Folynomial ~| [Dewel | 2 | | Separable Bound | 1 |

No. of Support vectors: 30 (25 0%)
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SVMs with Kernels

* |ris dataset, 1 vs 23, Gaussian RBF kernel
Gaussanfer e osena [0 [seperatie

Mo. of Suppart Wectors: 55 (45 53%)



SVMs with Kernels

* Iris dataset, 1 vs 23, Gaussian RBF kernel

Gaussian RBF | Sioma [ | Separable Bowndll [ 1 |

No. of Suppart Yectors: 41 (34 2%)
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SVMs with Kernels

* Chessboard dataset, Gaussian RBF kernel

No. of Suppart Vectors: 174 (58.0%)

<] pisens | separavi S| [ 1
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SVMs with Kernels

* Chessboard dataset, Polynomial kernel

Folynomial w| Dease | 10 | ] Separasle peund [ 1

No. of Support Vactors: 147 (49.0%)
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USPS Handwritten digits

7l 2HDe 7 F
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L 1000 training and 1000 test instances

Results:
SVM on raw images ~97% accuracy



Kernels in Logistic Regression

1

P =1lzw) = T o

* Define weights in terms of features:
W = Z aiCD(Xi) Yi
i

1

1 4 e~ (25 i ®(x;)-® (x)+b)
1

1 + e~ (s K (x,x;)+b)

PY=1|zw) =

* Derive simple gradient descent rule on a.
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SVMs vs. Logistic Regression

SVMs Logistic
Regression

Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels
Solution sparse Often yes! Almost always no!
Semantics of “Margin” Real probabilities
output




Can we kernelize linear regression?
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Linear (Ridge) regression

min 3 (V= XB)  + Bl B=(ATA+A)TIATY
1=1

Recall Xy i X%l) X%p) _
A= : = : e :
Xn | [ XY x P

Hence ATA is a p x p matrix whose entries denote the (sample)
correlation between the features

NOT inner products between the data points — the inner product
matrix would be AATwhich is n x n (also known as Gram matrix)

Using dual formulation, we can write the solution in terms of AAT
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Kernelized ridge regression

B=(ATA+))"'ATY

Using dual, can re-write solution as:

P

B=AT(AAT + AI)7'Y

How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

AAT involves only inner products between the training points
BUT still have an extra AT

Recall the predicted labelis f,(X) = X3
= XA (AAT + )Y

XAT contains inner products between test point X and training points! .,



Kernelized ridge regression

B=(ATA +)D)'ATY fn(X) = X8

Using dual, can re-write solution as:

P

B=AT(AAT + AI)7'Y

How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

> _ ~1Y where Kx (1) = ¢(X) - ¢(X;)
fa(X) =Kx(K+A)™Y wh K(i,7) = ¢(X;) - ¢(X;)

Work with kernels, never need to write out the high-dim vectors

Ridge Regression with (implicit) nonlinear features ¢(X)!

f(X) = o(X)p
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What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss
Relationship between SVMs and logistic regression
— 0/1 loss
— Hinge loss
— Log loss
Dual SVM formulation
— Easier to solve when dimension high d > n

— Kernel Trick
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