

Support Vector Machines

- Dual formulation and Kernel Trick

Aarti Singh

Machine Learning 10-315
Mar 28, 2022

MACHINE LEARNING DEPARTMENT



SVM summary so far

n training points

d features

$(\mathbf{x}_1, \dots, \mathbf{x}_n)$

\mathbf{x}_j is a d-dimensional vector

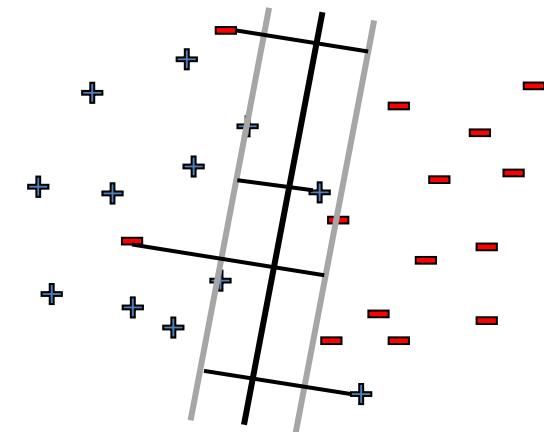
Hard-margin:

$$\begin{aligned} & \text{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w} \\ & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1, \quad \forall j \end{aligned}$$



Soft-margin:

$$\begin{aligned} & \min_{\mathbf{w}, b, \{\xi_j\}} \quad \mathbf{w} \cdot \mathbf{w} + C \sum \xi_j \\ & \text{s.t. } (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j \\ & \quad \xi_j \geq 0 \quad \forall j \end{aligned}$$



SVM primal vs dual

n training points

d features

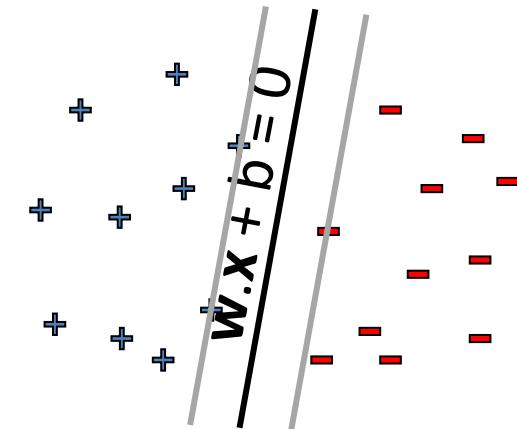
$(\mathbf{x}_1, \dots, \mathbf{x}_n)$

\mathbf{x}_j is a d-dimensional vector

Hard-margin:

Primal problem

$$\begin{aligned} & \text{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w} \\ & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1, \quad \forall j \end{aligned}$$



w – weights on features (d-dim problem)

- Convex quadratic program – quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

SVM primal vs dual

n training points

d features

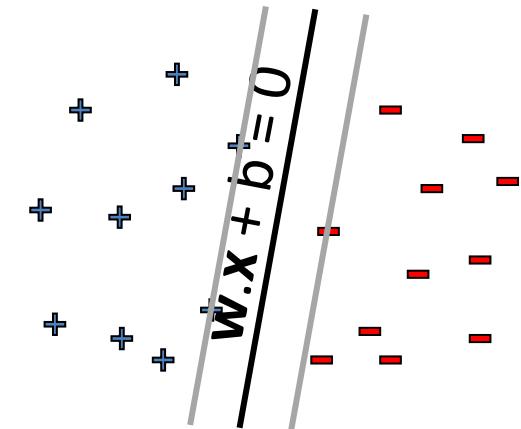
$(\mathbf{x}_1, \dots, \mathbf{x}_n)$

\mathbf{x}_j is a d-dimensional vector

Hard-margin:

Primal problem

$$\begin{aligned} & \text{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w} \\ & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1, \quad \forall j \end{aligned}$$



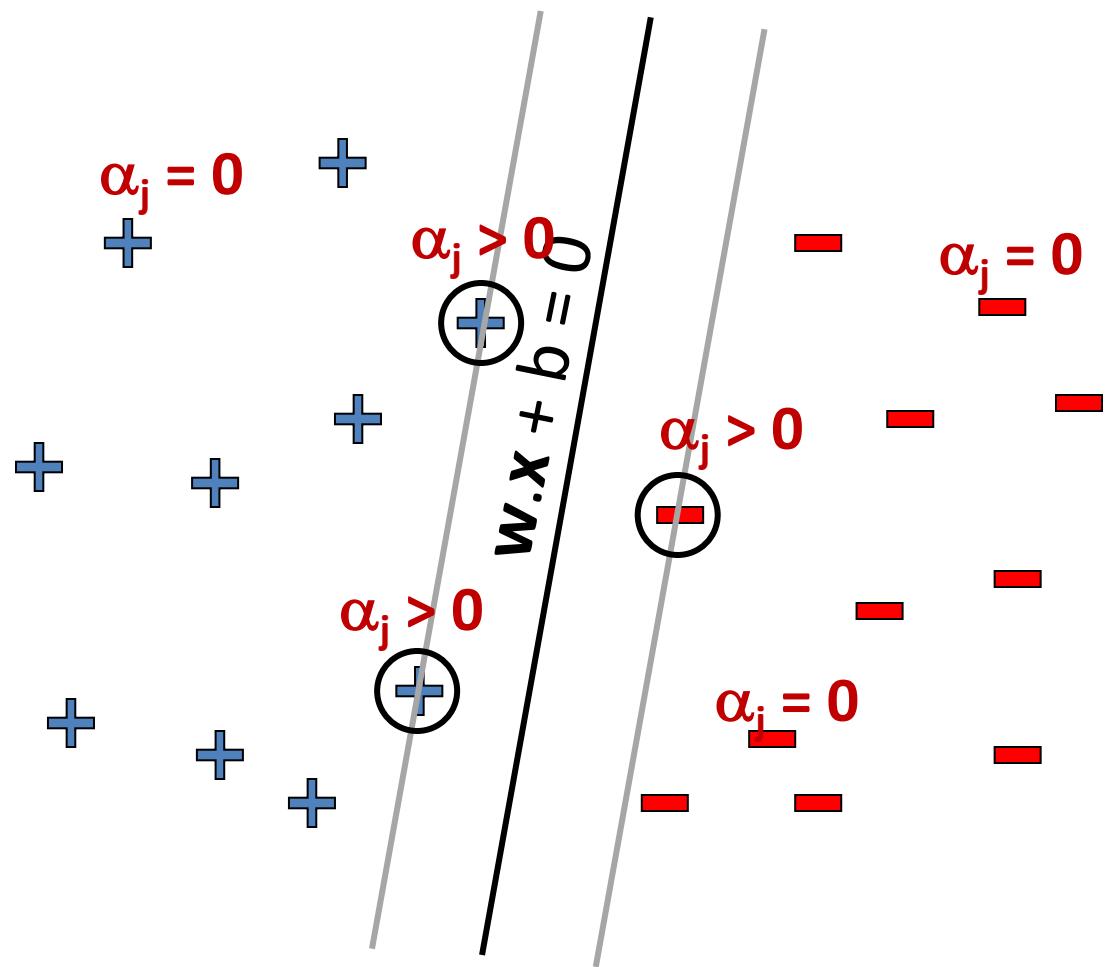
w - weights on features (d-dim problem)

Dual problem

$$\begin{aligned} & \text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j \\ & \sum_i \alpha_i y_i = 0 \\ & \alpha_i \geq 0 \end{aligned}$$

α - weights on data points (n-dim problem)

Dual SVM: Sparsity of dual solution



$$\mathbf{w} = \sum_j \alpha_j y_j \mathbf{x}_j$$

Only few α_j s can be non-zero : where constraint is active and tight

$$(\mathbf{w} \cdot \mathbf{x}_i + b)y_i = 1$$

Support vectors –
training points j whose
 α_j s are non-zero

Dual SVM – linearly separable (aka hard margin) case

$$\text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\begin{aligned} \sum_i \alpha_i y_i &= 0 \\ \alpha_i &\geq 0 \end{aligned}$$

Dual problem is also QP

Solution gives α_j s

Use any one of support vectors with $\alpha_k > 0$ to compute b since constraint is tight $(\mathbf{w} \cdot \mathbf{x}_k + b)y_k = 1$

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w} \cdot \mathbf{x}_k$$

for any k where $\alpha_k > 0$

Dual SVM – non-separable case

- Primal problem:

$$\begin{aligned} & \text{minimize}_{\mathbf{w}, b, \{\xi_j\}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\ & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j, \quad \forall j \\ & \xi_j \geq 0, \quad \forall j \end{aligned}$$

α_j
 μ_j

- Dual problem:

Lagrange
Multipliers

$$\begin{aligned} & \max_{\alpha, \mu} \min_{\mathbf{w}, b, \{\xi_j\}} L(\mathbf{w}, b, \xi, \alpha, \mu) \\ & s.t. \alpha_j \geq 0 \quad \forall j \\ & \mu_j \geq 0 \quad \forall j \end{aligned}$$

Dual SVM – non-separable case

$$\text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\begin{aligned} \sum_i \alpha_i y_i &= 0 \\ C \geq \alpha_i &\geq 0 \end{aligned}$$

comes from $\frac{\partial L}{\partial \xi} = 0$

Intuition:

If $C \rightarrow \infty$, recover hard-margin SVM

Dual problem is also QP

Solution gives α_j s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

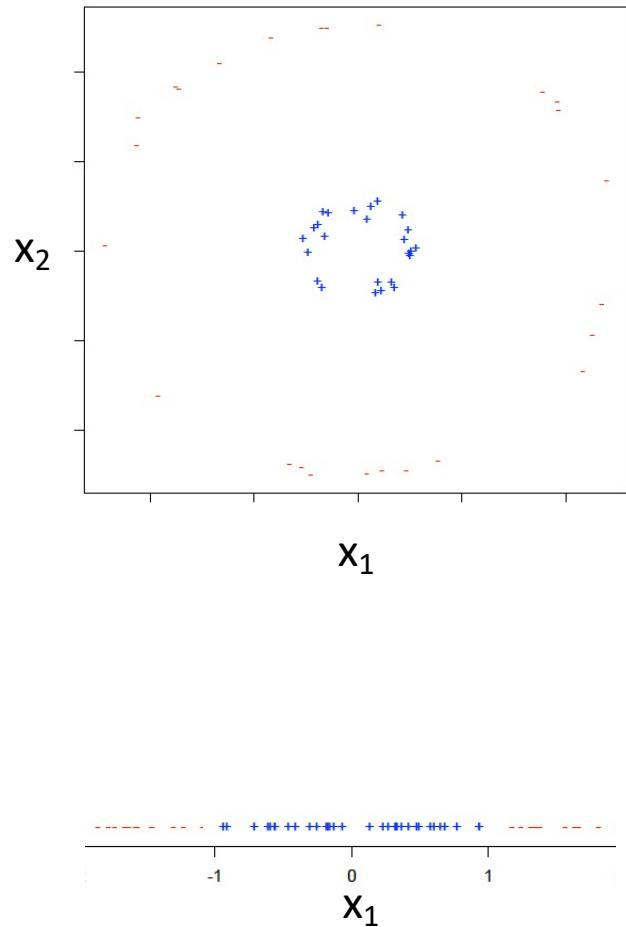
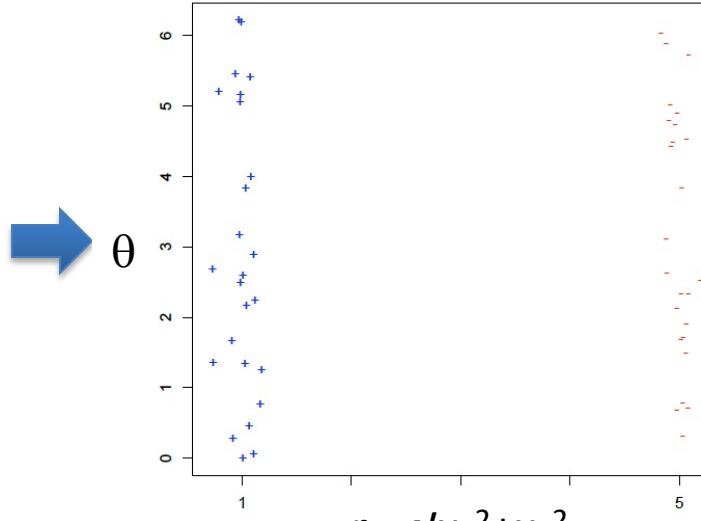
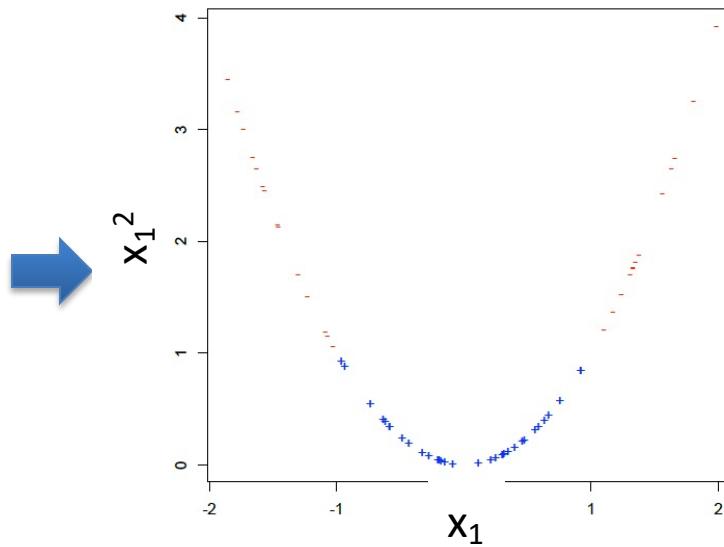
$$b = y_k - \mathbf{w} \cdot \mathbf{x}_k$$

for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions $d \gg n$)
- But, more importantly, the “**kernel trick**”!!!

Separable using higher-order features



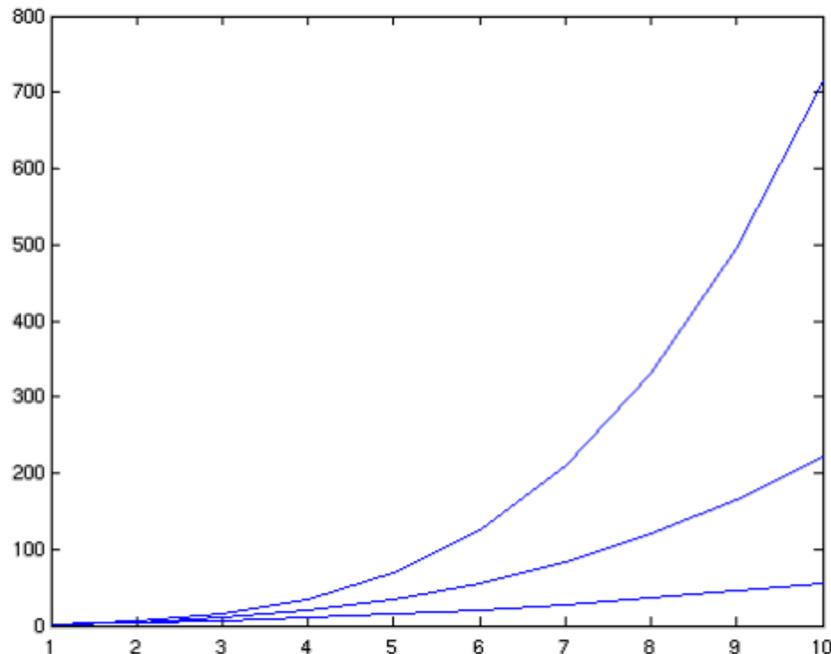
10

Polynomial features $\phi(x)$

m – input features

d – degree of polynomial

$$\text{num. terms} = \binom{d + m - 1}{d} = \frac{(d + m - 1)!}{d!(m - 1)!} \sim m^d$$



grows fast!
 $d = 6, m = 100$
about 1.6 billion terms

Dual formulation only depends on dot-products, not on w !

$$\text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\begin{aligned} \sum_i \alpha_i y_i &= 0 \\ C \geq \alpha_i &\geq 0 \end{aligned}$$

$$\text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

$$\begin{aligned} K(\mathbf{x}_i, \mathbf{x}_j) &= \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \\ \sum_i \alpha_i y_i &= 0 \\ C \geq \alpha_i &\geq 0 \end{aligned}$$

$\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomial features

$\Phi(\mathbf{x})$ = polynomials of degree exactly d

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

$$d=1 \quad \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

$$d=2 \quad \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2 \\ = (x_1 z_1 + x_2 z_2)^2 \\ = (\mathbf{x} \cdot \mathbf{z})^2$$

$$d \quad \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$$

The Kernel Trick!

$$\text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$

$$\sum_i \alpha_i y_i = 0$$

$$C \geq \alpha_i \geq 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dot-products for many classes of features

Common Kernels

- Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

- Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

- Gaussian/Radial kernels (polynomials of all orders – recall series expansion of \exp)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

- Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Mercer Kernels

What functions are valid kernels that correspond to feature vectors $\varphi(\mathbf{x})$?

Answer: **Mercer kernels K**

- K is continuous
- K is symmetric
- K is positive semi-definite, i.e. $\mathbf{x}^T \mathbf{K} \mathbf{x} \geq 0$ for all \mathbf{x}

Ensures optimization is concave maximization

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

- For a new input \mathbf{x} , if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: $\text{sign}(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)$

$$\mathbf{w} = \sum_i \alpha_i y_i \Phi(\mathbf{x}_i)$$
$$b = y_k - \mathbf{w} \cdot \Phi(\mathbf{x}_k)$$

for any k where $C > \alpha_k > 0$

- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

SVMs with Kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_i
- At classification time, compute:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

$$b = y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i)$$

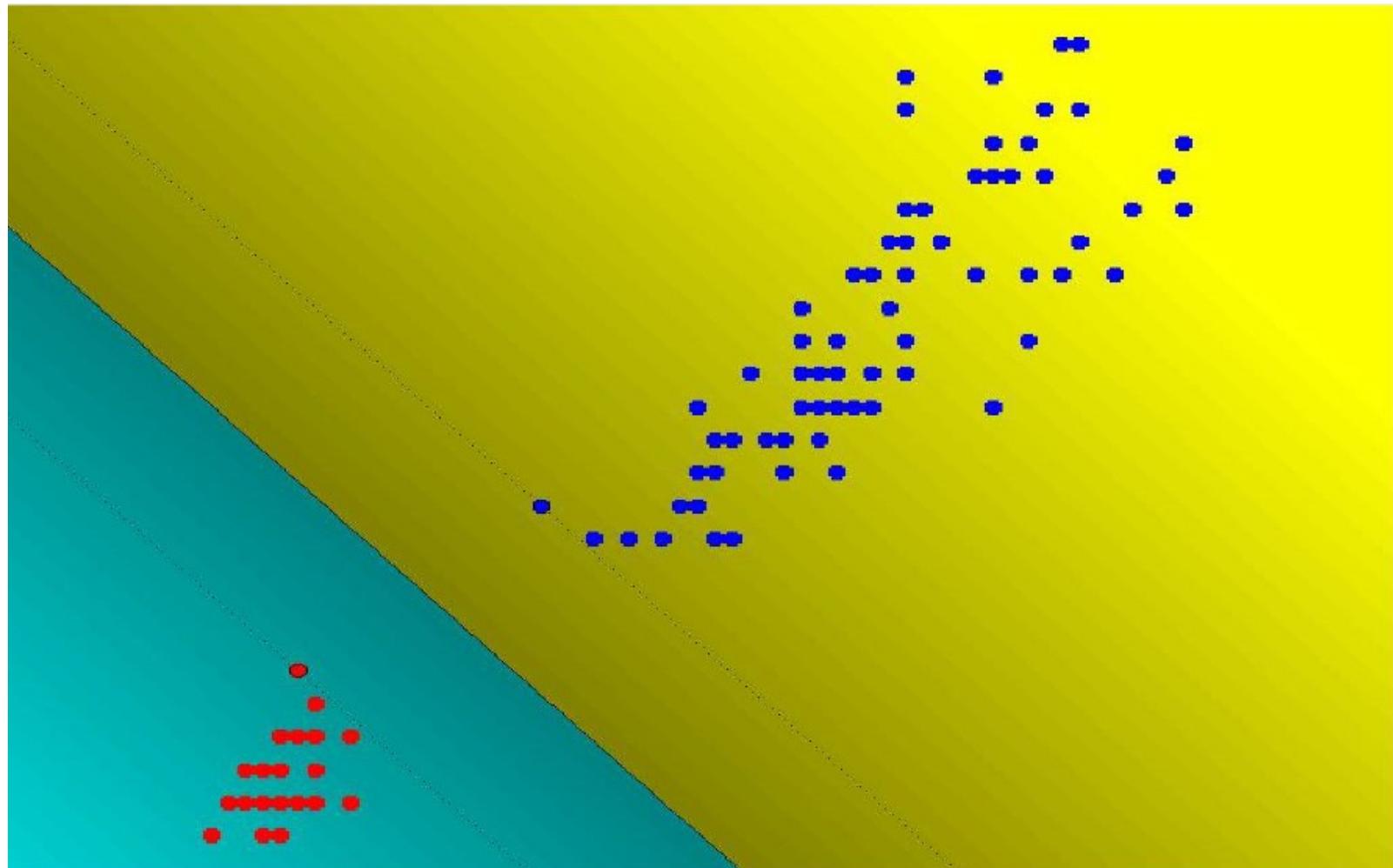
for any k where $C > \alpha_k > 0$



$$\text{sign}(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)$$

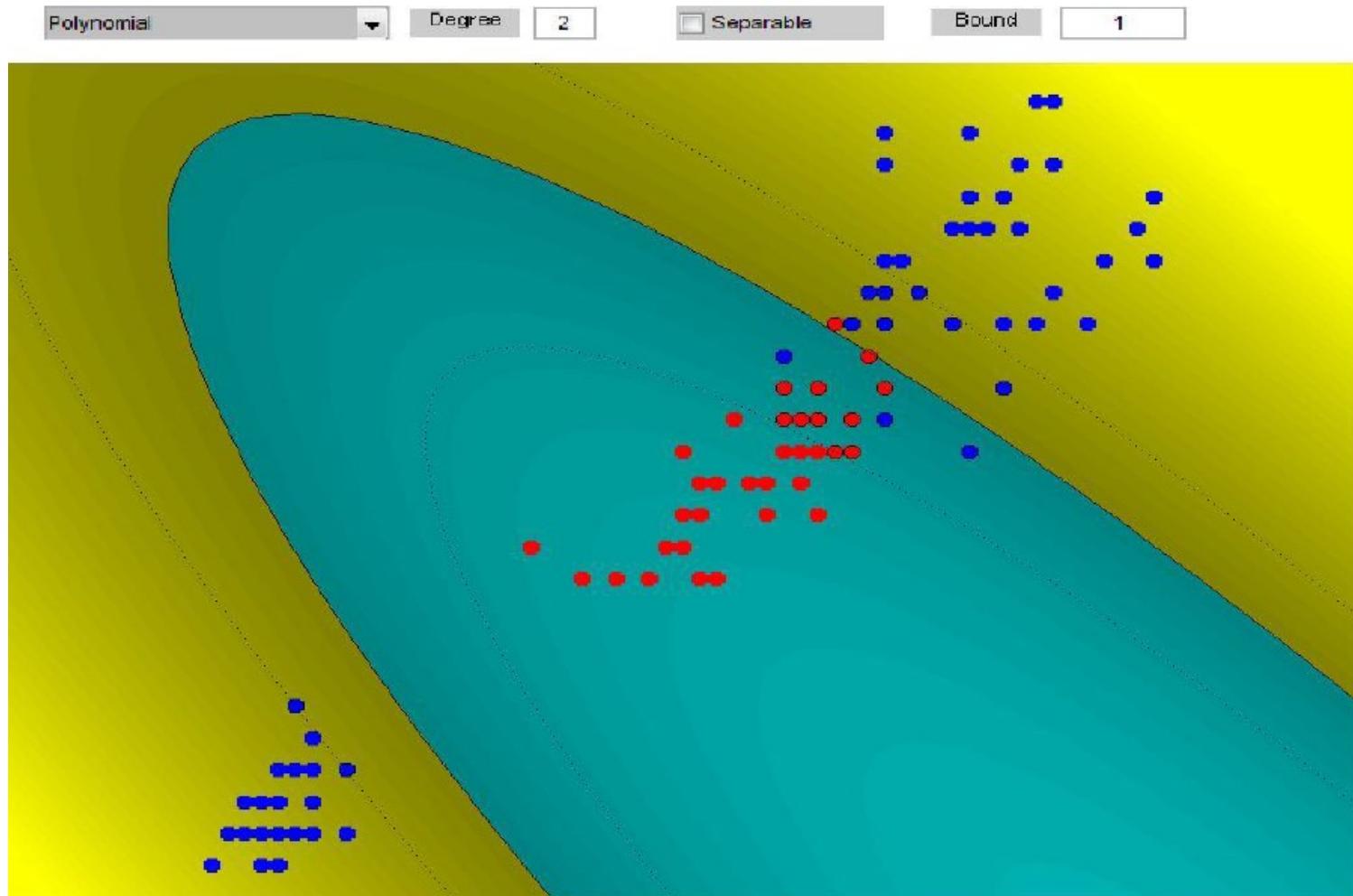
SVMs with Kernels

- Iris dataset, 2 vs 13, Linear Kernel



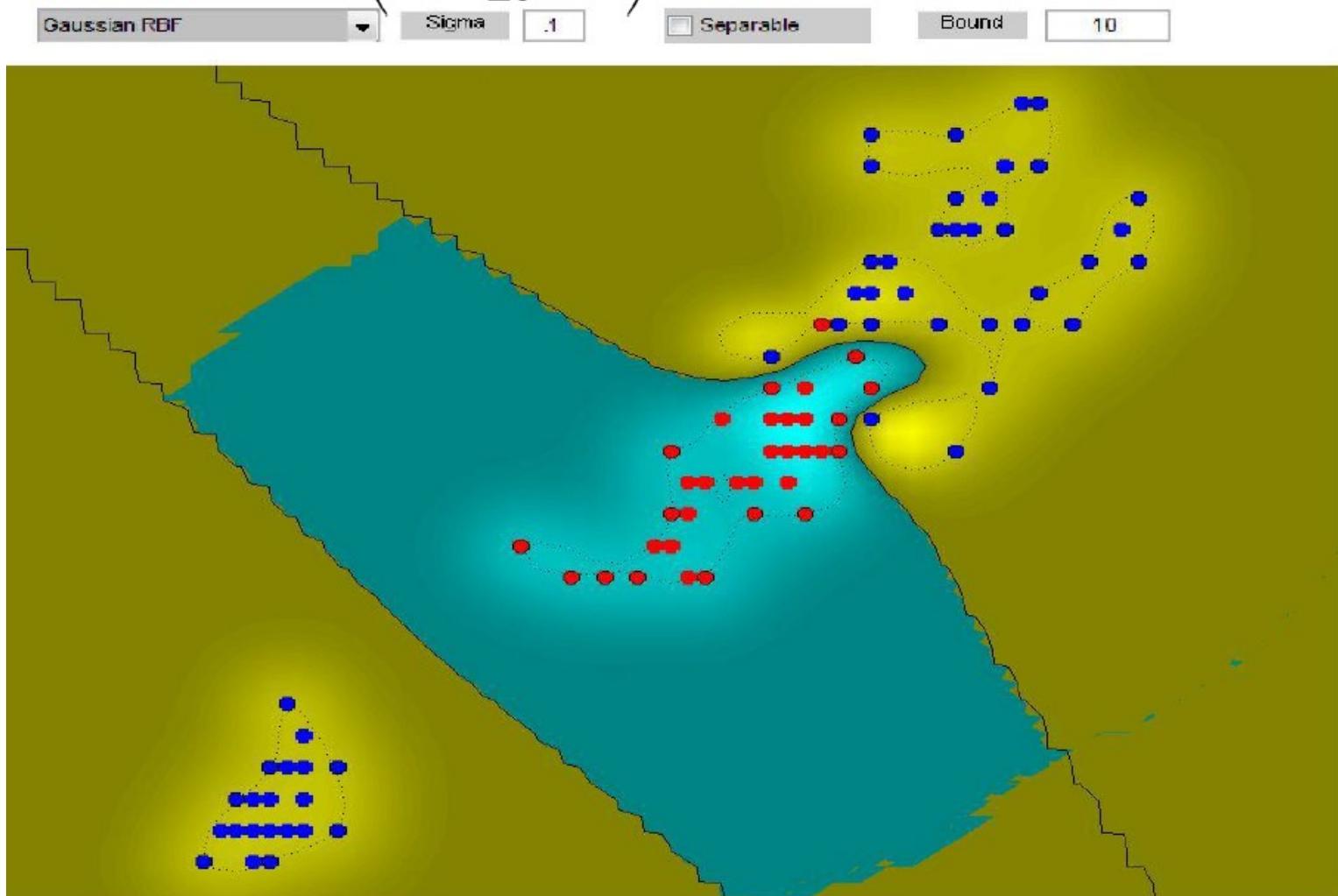
SVMs with Kernels

- Iris dataset, 1 vs 23, Polynomial Kernel degree 2



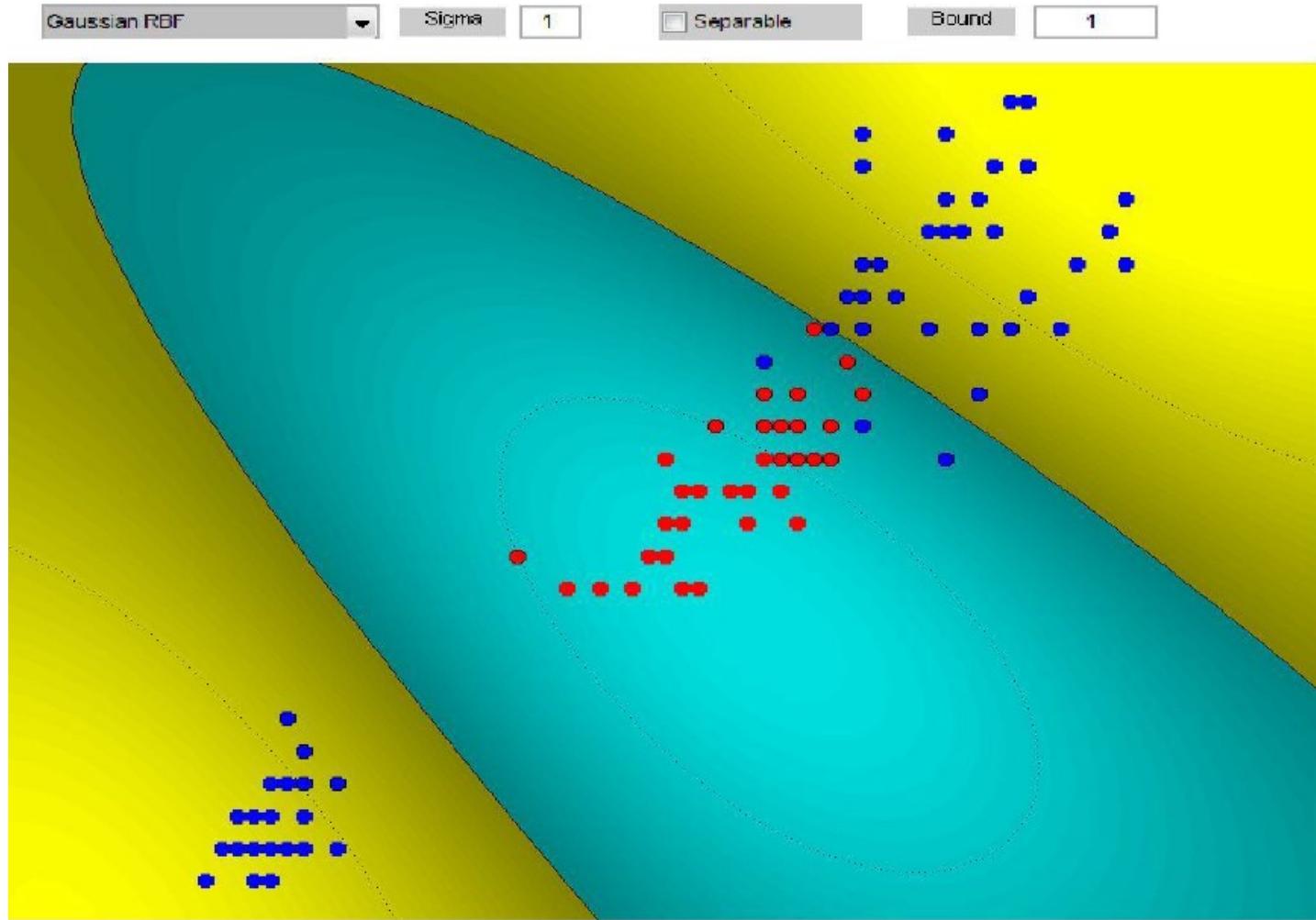
SVMs with Kernels

- Iris dataset, 1 vs 23, Gaussian RBF kernel



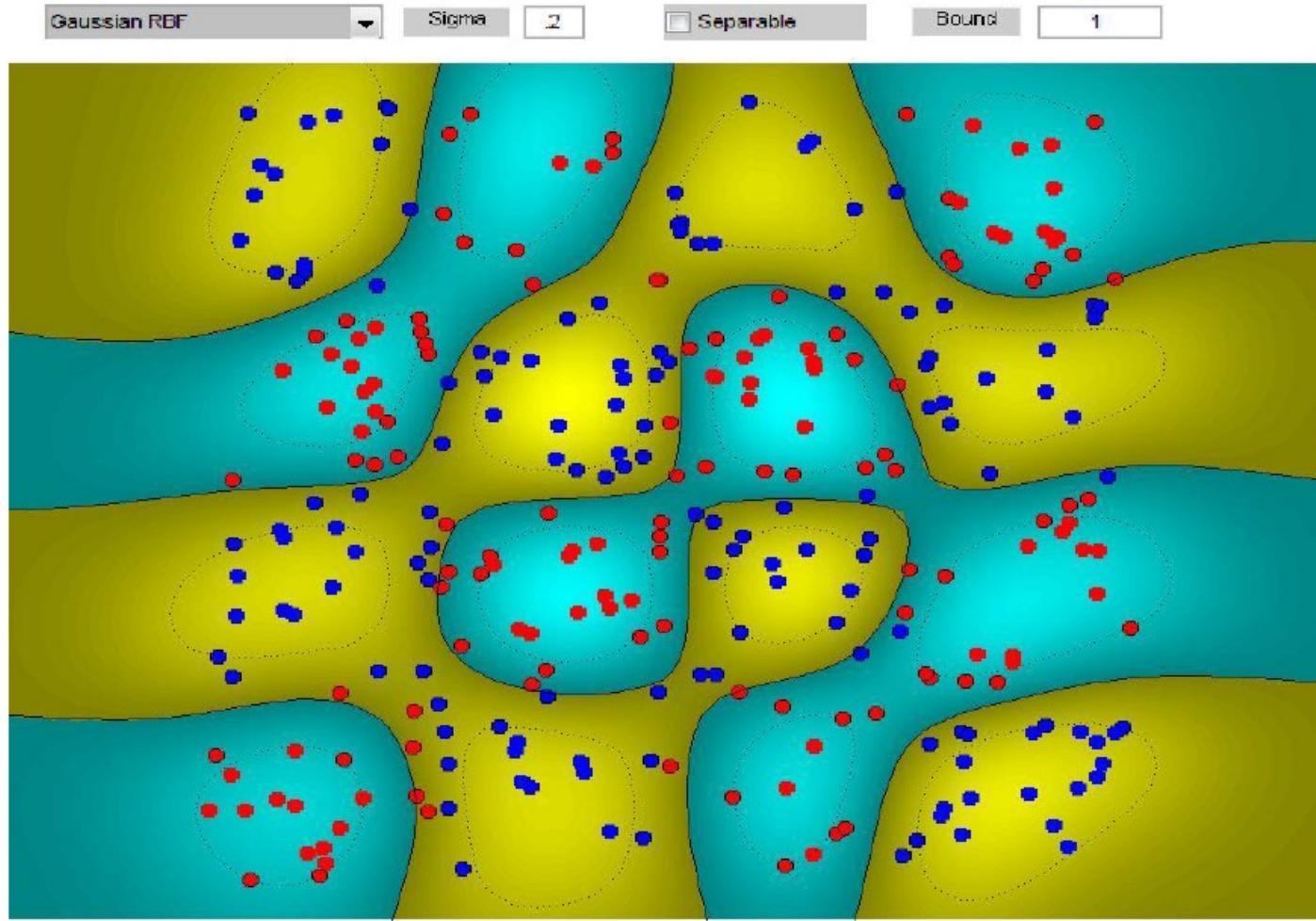
SVMs with Kernels

- Iris dataset, 1 vs 23, Gaussian RBF kernel



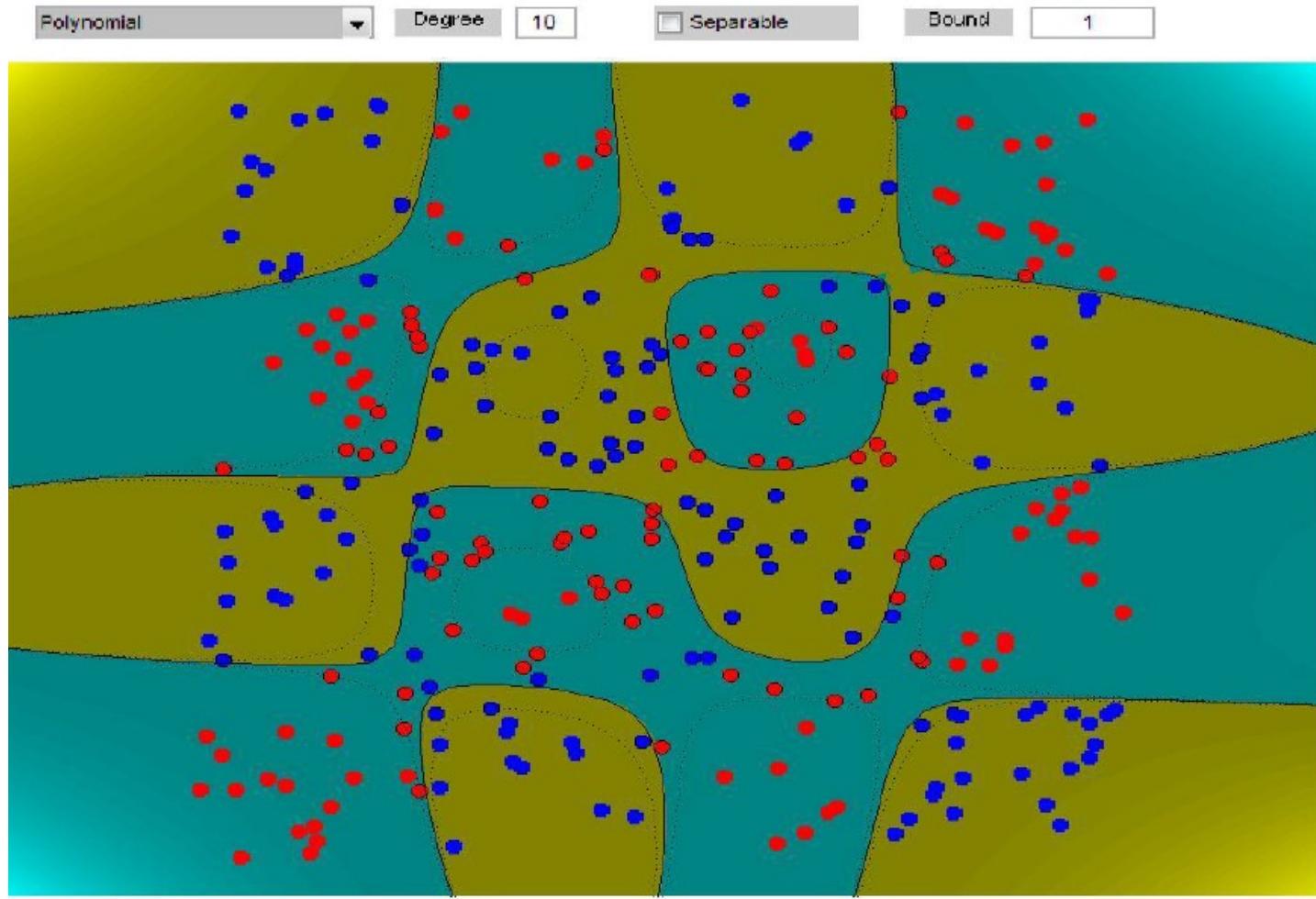
SVMs with Kernels

- Chessboard dataset, Gaussian RBF kernel



SVMs with Kernels

- Chessboard dataset, Polynomial kernel



USPS Handwritten digits



- 1000 training and 1000 test instances

Results:

SVM on raw images ~97% accuracy

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

- Define weights in terms of features:

$$\mathbf{w} = \sum_i \alpha_i \Phi(\mathbf{x}_i) \mathbf{y}_i$$

$$\begin{aligned} P(Y = 1 \mid x, \mathbf{w}) &= \frac{1}{1 + e^{-(\sum_i \alpha_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}) + b)}} \\ &= \frac{1}{1 + e^{-(\sum_i \alpha_i K(\mathbf{x}, \mathbf{x}_i) + b)}} \end{aligned}$$

- Derive simple gradient descent rule on α_i

SVMs vs. Logistic Regression

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of output	“Margin”	Real probabilities

Can we kernelize linear regression?

Linear (Ridge) regression

$$\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \quad \hat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

Recall

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix}$$

Hence $\mathbf{A}^T \mathbf{A}$ is a $p \times p$ matrix whose entries denote the (sample) correlation between the features

NOT inner products between the data points – the inner product matrix would be $\mathbf{A} \mathbf{A}^T$ which is $n \times n$ (also known as Gram matrix)

Using dual formulation, we can write the solution in terms of $\mathbf{A} \mathbf{A}^T$

Kernelized ridge regression

$$\hat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

Using dual, can re-write solution as:

$$\hat{\beta} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

How does this help?

- Only need to invert $n \times n$ matrix (instead of $p \times p$ or $m \times m$)
- More importantly, kernel trick!

$\mathbf{A} \mathbf{A}^T$ involves only inner products between the training points
BUT still have an extra \mathbf{A}^T

$$\begin{aligned} \text{Recall the predicted label is } \hat{f}_n(X) &= \mathbf{X} \hat{\beta} \\ &= \mathbf{X} \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y} \end{aligned}$$

$\mathbf{X} \mathbf{A}^T$ contains inner products between test point \mathbf{X} and training points!

Kernelized ridge regression

$$\hat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\hat{f}_n(X) = \mathbf{X} \hat{\beta}$$

Using dual, can re-write solution as:

$$\hat{\beta} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

How does this help?

- Only need to invert $n \times n$ matrix (instead of $p \times p$ or $m \times m$)
- More importantly, kernel trick!

$$\hat{f}_n(X) = \mathbf{K}_X (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y} \text{ where}$$

$$\begin{aligned}\mathbf{K}_X(i) &= \phi(X) \cdot \phi(X_i) \\ \mathbf{K}(i, j) &= \phi(X_i) \cdot \phi(X_j)\end{aligned}$$

Work with kernels, never need to write out the high-dim vectors

Ridge Regression with (implicit) nonlinear features $\phi(X)$!

$$f(X) = \phi(X) \beta$$

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss
- Dual SVM formulation
 - Easier to solve when dimension high $d > n$
 - Kernel Trick