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SVM summary so far
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n training points (x1, …, xn) 
d features xj is a d-dimensional vector 

Hard-margin:

Soft-margin:

w
.x

+ 
b 

= 
0

min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j



SVM primal vs dual

• Convex quadratic program – quadratic objective, linear 
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)
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w – weights on features (d-dim problem)

n training points (x1, …, xn) 
d features xj is a d-dimensional vector 

Hard-margin:
Primal problem

w
.x

+ 
b 

= 
0



SVM primal vs dual
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w – weights on features (d-dim problem)

n training points (x1, …, xn) 
d features xj is a d-dimensional vector 

Hard-margin:
Primal problem

Dual problem

w
.x

+ 
b 

= 
0

a – weights on data points (n-dim problem)



Dual SVM: Sparsity of dual solution
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w
.x

+ 
b 

= 
0

Only few ajs can be 
non-zero : where 
constraint is active and 
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose 
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0 Complementary 
slackness implies



Dual SVM – linearly separable 
(aka hard margin) case

Dual problem is also QP
Solution gives ajs
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Use any one of support vectors with 
ak>0 to compute b since constraint is 
tight (w.xk + b)yk = 1



Dual SVM – non-separable case
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• Primal problem:

• Dual problem:  
Lagrange 
Multipliers

,{ξj} 

,{ξj} L(w, b, ⇠,↵, µ)



Dual SVM – non-separable case
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Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0



So why solve the dual SVM?

• There are some quadratic programming algorithms 
that can solve the dual faster than the primal, 
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!
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Separable using higher-order features
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Polynomial features f(x) 

11

m – input features d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms



Dual formulation only depends on 
dot-products, not on w!
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Φ(x) – High-dimensional feature space, but never need it explicitly as long 
as we can compute the dot product fast using some Kernel K



Dot Product of Polynomial features
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d=1

d=2

d



The Kernel Trick!
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• Never represent features explicitly
– Compute dot products in closed form

• Constant-time high-dimensional dot-products for many 
classes of features



Common Kernels
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• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders – recall 
series expansion of exp)

• Sigmoid



Mercer Kernels
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What functions are valid kernels that correspond to feature 
vectors j(x)?

Answer: Mercer kernels K
• K is continuous 
• K is symmetric
• K is positive semi-definite, i.e.  xTKx ≥ 0 for all x

Ensures optimization is concave maximization



Overfitting
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• Huge feature space with kernels, what about 
overfitting???
– Maximizing margin leads to sparse set of support 

vectors 
– Some interesting theory says that SVMs search for 

simple hypothesis with large margin
– Often robust to overfitting



What about classification time?
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• For a new input x, if we need to represent F(x), we are in trouble!
• Recall classifier: sign(w.F(x)+b)

• Using kernels we are cool!



SVMs with Kernels
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• Choose a set of features and kernel function
• Solve dual problem to obtain support vectors ai

• At classification time, compute:

Classify as



SVMs with Kernels
• Iris dataset, 2 vs 13, Linear Kernel
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SVMs with Kernels
• Iris dataset, 1 vs 23, Polynomial Kernel degree 2
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SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel
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SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel
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SVMs with Kernels
• Chessboard dataset, Gaussian RBF kernel
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SVMs with Kernels
• Chessboard dataset, Polynomial kernel
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USPS Handwritten digits
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Kernels in Logistic Regression
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• Define weights in terms of features:

• Derive simple gradient descent rule on ai

yi



SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” Real probabilities
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Can we kernelize linear regression?
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Linear (Ridge) regression
b�MAP = (ATA+ �I)�1ATY

Recall

Hence ATA is a p x p matrix whose entries denote the (sample) 
correlation between the features

NOT inner products between the data points – the inner product 
matrix would be AAT which is n x n (also known as Gram matrix)

Using dual formulation, we can write the solution in terms of AAT
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Kernelized ridge regression

Using dual, can re-write solution as:

How does this help? 
• Only need to invert n x n matrix (instead of p x p or m x m)
• More importantly, kernel trick!

AAT involves only inner products between the training points
BUT still have an extra AT

Recall the predicted label is 

XAT contains inner products between test point X and training points!

b�MAP = (ATA+ �I)�1ATY

b� = AT (AAT + �I)�1Y

b� = AT (AAT + �I)�1Y
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Kernelized ridge regression

Using dual, can re-write solution as:

How does this help? 
• Only need to invert n x n matrix (instead of p x p or m x m)
• More importantly, kernel trick!

where

Work with kernels, never need to write out the high-dim vectors

KX(i) = ���(X) · ���(Xi)

K(i, j) = ���(Xi) · ���(Xj)

b�MAP = (ATA+ �I)�1ATY

b� = AT (AAT + �I)�1Y

bfn(X) = KX(K+ �I)�1Y

Ridge Regression with (implicit) nonlinear features             !

f(X) = �(X)�

KX(i) = ���(X) · ���(Xi)



What you need to know
• Maximizing margin
• Derivation of SVM formulation
• Slack variables and hinge loss
• Relationship between SVMs and logistic regression

– 0/1 loss
– Hinge loss
– Log loss

• Dual SVM formulation
– Easier to solve when dimension high d > n
– Kernel Trick
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