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Hard-margin SVM
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min  w.w
w,b

s.t. (w.xj+b) yj ≥ 1 "j

Data perfectly separable by a 
linear decision boundary

Hard margin approach

g
Margin, g   ⍺ 1/ǁwǁ

Solve using Quadratic 
Programming (QP)



Soft-margin SVM
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min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables 
= (>1 if xj misclassifed)

pay linear penalty if mistake

C  - tradeoff parameter (chosen by 
cross-validation)

Still QP J

Soft margin approach
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Slack variables

What is the slack ξj  for the 
following points?

(w.xj+b) yj ≥ 1-ξj "j

Confidence       |     Slack

min    w.w + C Σ ξjw,b,{ξj} 
s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j
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Notice that

Slack variables – Hinge loss

0-1 loss

0 1

Hinge loss



Slack variables – Hinge loss
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Hinge loss

0-1 loss

0-1 1

min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

j

Regularized hinge loss

min  w.w + C Σ(1-(w.xj+b)yj)+w,b j



Support Vectors
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Margin support vectors
ξj = 0,  (w.xj+b) yj = 1 
(don’t contribute to objective 
but enforce constraints on 
solution)

Correctly classified but on 
margin

Non-margin support 
vectors
ξj > 0
(contribute to both objective 
and constraints)

1 > ξj > 0 Correctly classified 
but inside margin
ξj > 1 Incorrectly classified

min    w.w + C Σ ξjw,b,{ξj} 
s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j



SVM – linearly separable case

• Convex quadratic program – quadratic objective, linear 
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)
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w – weights on features (d-dim problem)

n training points (x1, …, xn) 
d features xj is a d-dimensional vector 

• Primal problem:

w
.x

+ 
b 

= 
0



Detour - Constrained Optimization
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Constraint inactive Constraint active 
(tight)

x⇤ = max(b, 0)



Constrained Optimization
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b +ve

Equivalent unconstrained optimization:
minx x2 + I(x-b)

Replace with lower bound (a >= 0)
x2 + I(x-b)  >=   x2 - a(x-b)

L(x,a)



Primal and Dual Problems
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Primal problem: p* = Dual problem: d* =

min
x

max
↵�0

L(x,↵) ==

where Lagrangian

How to form the Lagrangian? 
For each  constraint, introduce a positive Lagrange multiplier 
Fold constraints into objective



Why solve the Dual problem?
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Primal problem: p* = Dual problem: d* =

Ø Dual problem (maximization) is always concave even if 
primal is not convex 

Ø As many dual variables a as constraints, helpful if fewer 
constraints than dimension of primal variable x

min
x

max
↵�0

L(x,↵) ==

Why?    Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]



Connection between Primal and Dual
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Primal problem: p* = 

Ø Weak duality: The dual solution d* lower bounds the primal 
solution p* i.e. d* ≤  p*

To see this, recall 

For every feasible x’ (i.e. x’ ≥ b) and feasible α’ (i.e. α’ ≥ 0) , notice    
that

d(α) =                                ≤  x’2 – a’(x’-b) ≤  x’2

Since above holds true for every feasible x’, we have d(α) ≤ x*2 = p*

Dual problem: d* =



Connection between Primal and Dual
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Primal problem: p* = 

Ø Weak duality: The dual solution d* lower bounds the primal 
solution p* i.e. d* ≤  p*

Dual problem: d* =

Ø Strong duality: d* = p* holds often for many problems of 
interest e.g. if the primal is a feasible convex objective with linear 
constraints
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Connection between Primal and Dual
What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.



Primal and Dual Problems
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Primal problem: p* = Dual problem: d* =

min
x

max
↵�0

L(x,↵) ==

where Lagrangian

How to form the Lagrangian? 
For each  constraint, introduce a positive Lagrange multiplier 
Fold constraints into objective



Dual SVM – linearly separable case

• Primal problem:

• Dual problem (derivation):  
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w – weights on features (d-dim problem)

a – weights on training pts (n-dim problem)

n training points, d features (x1, …, xn) where xi is a d-dimensional 
vector 



Dual SVM – linearly separable case

• Dual problem:  
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If we can solve for 
as (dual problem), 
then we have a 
solution for w
(primal problem) 



Dual SVM – linearly separable case

• Dual problem:  
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Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

20

What about b?



Dual SVM: Sparsity of dual solution
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w
.x

+ 
b 

= 
0

Only few ajs can be 
non-zero : where 
constraint is active and 
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose 
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0 Complementary 
slackness implies



Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs
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Use any one of support vectors with 
ak>0 to compute b since constraint is 
tight (w.xk + b)yk = 1



So why solve the dual SVM?

• There are some quadratic programming algorithms 
that can solve the dual faster than the primal, 
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!
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