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Hard-margin SVM

Data perfectly separable by a
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Soft-margin SVM

Allow “error” in classification

Soft margin approach
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s.t. (w.x+b) y; 2 1-§ V|
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§ - “slack” variables
= (>1 if x; misclassifed)
pay linear penalty if mistake
C - tradeoff parameter (chosen by
cross-validation)
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Slack variables — Hinge loss

Notice that

§=1—(w-z; +b)y;))+

Hinge loss




Slack variables — Hinge loss
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Hinge loss

0-1 loss
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Regularized hinge loss

min w.w + C2¢
W,b,{gj} J

s.t. (w.x+b) y; 2 1-§ V|
20 V]

& rlep wW.W + C jZ(l—(w.xj+b)yj)+



min ww+C2 EJ-
w)b/{aj}

st.(wxth)y21-§ Vi Support Vectors

20 V]

/
+ 0<g <1
‘i _

Margin support vectors
=0, (wx+b)y,=1

(don’t contribute to objective
but enforce constraints on
solution)

Correctly classified but on
margin

Non-margin support

vectors

§>0

(contribute to both objective
and constraints)

1>¢ >0 Correctly classified
but inside margin

& > 1 Incorrectly classified



SVM - linearly separable case

n training points (Xq, o) Xp) + 5

d features X; is a d-dimensional vector ¥ .
+ 0
+ & +
Primal problem: minimize,, ; %w.w ., ;
(wxj+b)y; > 1, Vj *

w - weights on features (d-dim problem)

Convex quadratic program — quadratic objective, linear
constraints

But expensive to solve if d is very large
Often solved in dual form (n-dim problem)



Detour - Constrained Optimization

ming =2

s.t. x>0

s.t. > -1

\\ // \\i\ //
r* =0 ¥ =0

Constraint inactive

r* = max(b,0)

min, x2

s.t. z>1

\\ /E/
=1

Constraint active
(tlght) 9




Constrained Optimization

D
b+ve MiNg T
§ s.t. x>0
Equivalent unconstrained optimization:
' min, x? + (x-b)
¥ =b

Replace with lower bound (o >= 0)
x2 + |(x-b) >= |x2 - oc(x-b)

1
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Primal and Dual Problems

Primal problem: p* = min, z2 Dual problem: d*= max, d(o)
st. x>0 s.t. >0
- minmax L(xz, a) = Maxq Ming L(z, o)
xr o>0
= s.t. >0

where Lagrangian L(x, o) = 2 — a(x — b)

How to form the Lagrangian?
For each constraint, introduce a positive Lagrange multiplier
Fold constraints into objective
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Why solve the Dual problem?

Primal problem: p* = min, z2 Dual problem: d*= max, d(o)
st. x>0 s.t. >0
- minmax L(xz, a) = Maxq Ming L(z, o)
xr o>0
- s.t. >0

» Dual problem (maximization) is always concave even if
primal is not convex

Why? Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]

L(z,a) =22 — a(z —b)

» As many dual variables o as constraints, helpful if fewer
constraints than dimension of primal variable x 12



Connection between Primal and Dual

Primal problem: p* = min, z2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* £ p*

To see this, recall L(z,a) = 22 — a(z — b)
For every feasible x’ (i.e. x’ 2 b) and feasible o’ (i.e. a’ > 0) , notice
that
d(a) = Mming L(x, ) £ x2—a’(x'-b) £ x’2
Since above holds true for every feasible x’, we have d(a) < x*? = p*
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Connection between Primal and Dual

Primal problem: p* = min, z2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* £ p*

» Strong duality: d* = p* holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints
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Connection between Primal and Dual

What does strong duality say about a* (the a that achieved optimal value of
dual) and z* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for o* and x*:

e 1. yL(z*,a*) =0 i.e. Gradient of Lagrangian at =* and a* is zero.

o 2. x* > bi.e. x*is primal feasible

o 3. o >01i.e. «a* is dual feasible

o 4. a*(x* —b) =0 (called as complementary slackness)

We use the first one to relate £* and a*. We use the last one (complimentary

slackness) to argue that o = 0 if constraint is inactive and a* > 0 if constraint

is active and tight. .



Primal and Dual Problems

Primal problem: p* = min, z2 Dual problem: d*= max, d(o)
st. x>0 s.t. >0
- minmax L(xz, a) = Maxq Ming L(z, o)
xr o>0
= s.t. >0

where Lagrangian L(x, o) = 2 — a(x — b)

How to form the Lagrangian?
For each constraint, introduce a positive Lagrange multiplier
Fold constraints into objective
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Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
* Primal problem: minimizey, g, %w.w

(w.xj + b) yj > 1, Vj
w - weights on features (d-dim problem)

 Dual problem (derivation):

L(w,b, o) = %W.W — > [(W.Xj + b) Y — 1}
Oéj 2 O, \V/j

o - weights on training pts (n-dim problem)
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Dual SVM - linearly separable case

* Dual problem:

MaXq MiNy p L(W, b, o) = %W.W — 2. [(W.Xj -+ b) Yj — 1}

Oéj Z 07 \V/]

oL

— 0 W — Zajijj If we can solve for
W F os (dual problem),
, then we have a

L lution f

oL _ N PN solution for w
ab Z Jyj (prlma| pr0b|em)
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Dual SVM - linearly separable case

* Dual problem:

MaXq MiNy p L(W, b, o) = %W.W — 2. [(W.Xj -+ b) Yj — 1}

OéjZO, V]

=W =) ajy;X; = 2_ajy; =0
j j
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Dual SVM - linearly separable case

C 1
MaxXimilIZEy ZZ Q; — 5 Zz,j Q;0GY;Y XX

2. iy = O

87 Z O
Dual problem is also QP — Z Y X,
Solution gives as i

What about b?




Dual SVM: Sparsity of dual solution

S
(X,j>(b =
Il
QO
oS +[ o.>0
X J
NG,
ocj>0
@ a:O

W =) oYX,
j

Complementary
slackness implies

Only few ays can be
non-zero : where
constraint is active and

tight
(w.x; + bly,=1

Support vectors —
training points j whose

oS are non-zero



Dual SVM - linearly separable case

C 1
MaxXimilIZEy ZZ Q; — 5 Zz,j Q;0GY;Y XX

> 0y; = 0

87 Z O
Dual problem is also QP W= ) yiX;
Solution gives os > i

b=y — W.Xp
Use any one of support vectors with for any k where oy, > 0

o, >0 to compute b since constraint is
tight (w.x, + b)y, =1 )




So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!
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