

Support Vector Machines (SVMs)

contd...

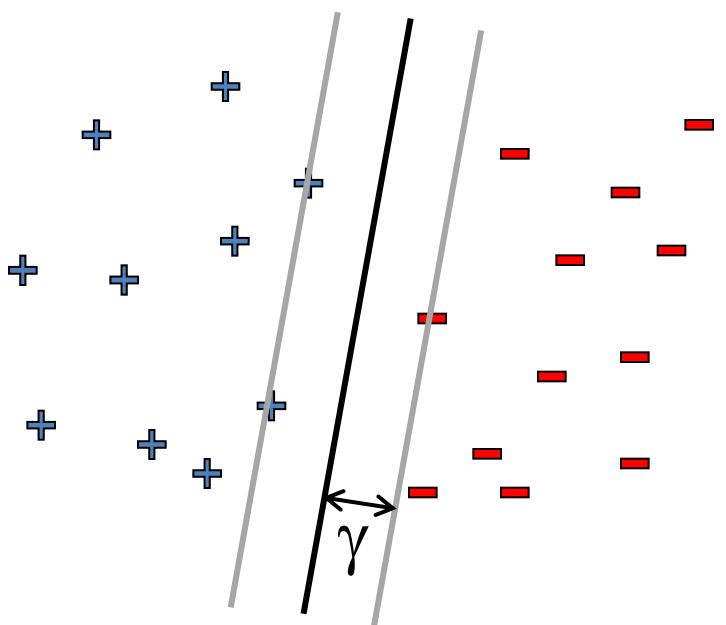
Aarti Singh

Machine Learning 10-315
Mar 23, 2022

MACHINE LEARNING DEPARTMENT

Hard-margin SVM

Data perfectly separable by a linear decision boundary



Hard margin approach

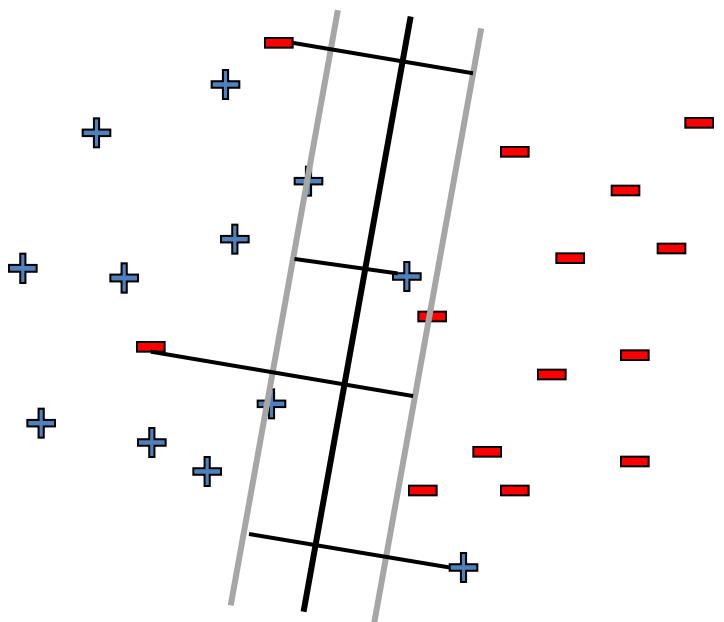
$$\begin{aligned} & \min_{\mathbf{w}, b} \mathbf{w} \cdot \mathbf{w} \\ \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 \quad \forall j \end{aligned}$$

Solve using Quadratic Programming (QP)

Margin, $\gamma \propto 1/\|\mathbf{w}\|$

Soft-margin SVM

Allow “error” in classification



Soft margin approach

$$\begin{aligned} & \min_{\mathbf{w}, b, \{\xi_j\}} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\ \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j \\ & \xi_j \geq 0 \quad \forall j \end{aligned}$$

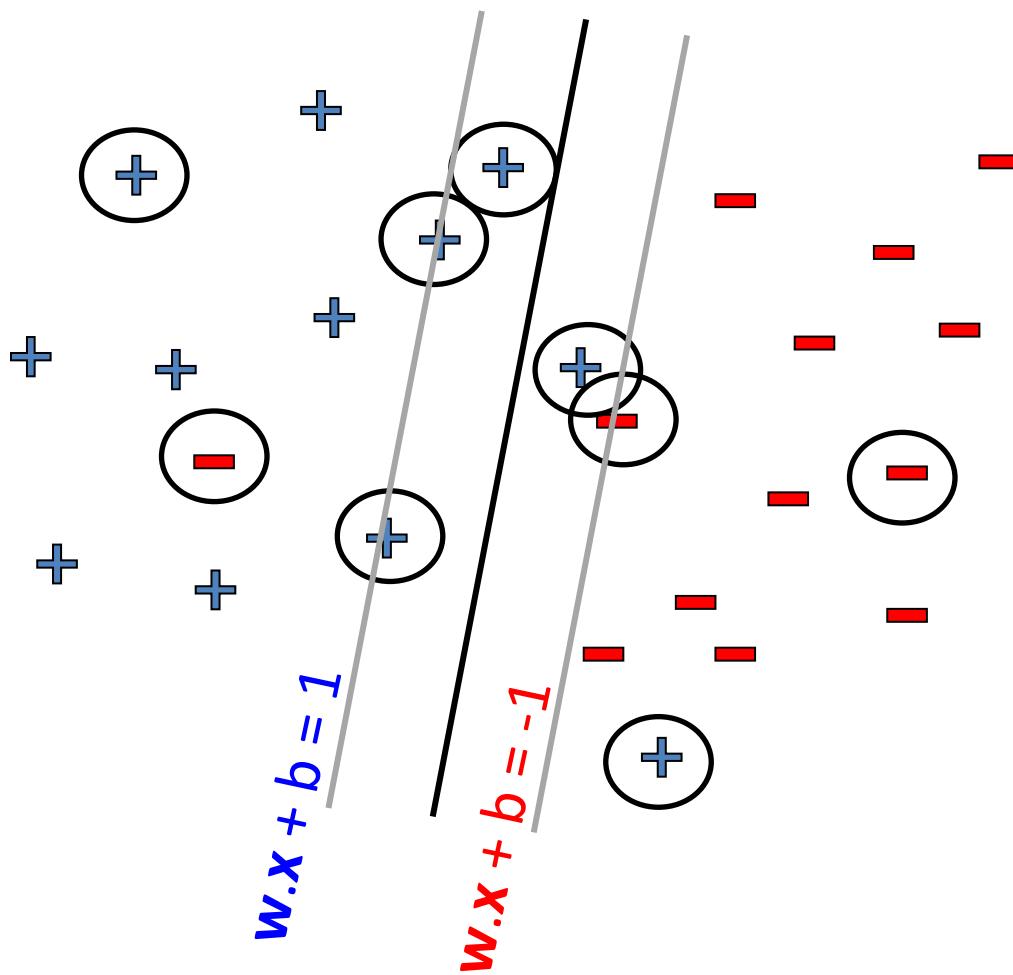
ξ_j - “slack” variables
= (>1 if x_j misclassified)
pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Still QP ☺

$$\begin{aligned}
 & \min_{\mathbf{w}, b, \{\xi_j\}} \mathbf{w} \cdot \mathbf{w} + C \sum \xi_j \\
 \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j \\
 & \xi_j \geq 0 \quad \forall j
 \end{aligned}$$

Slack variables

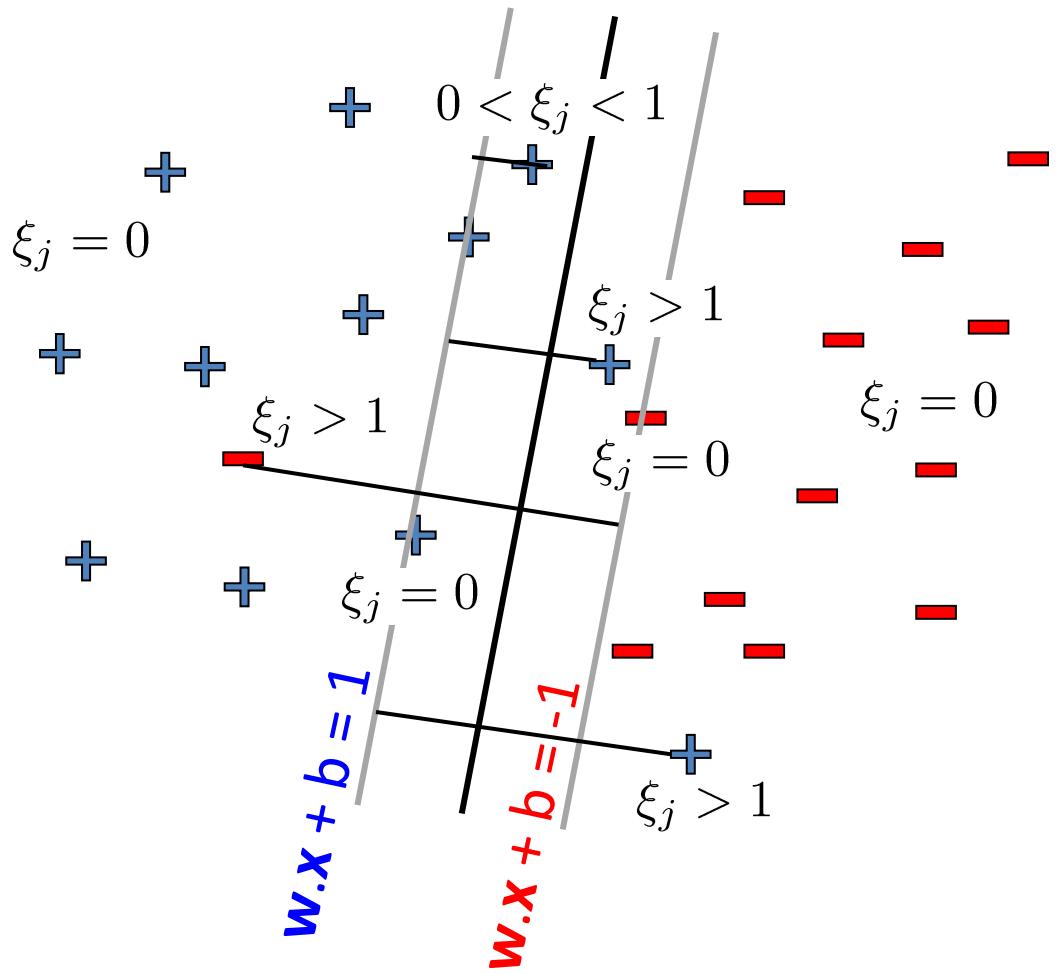


$$(\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j$$

What is the slack ξ_j for the following points?

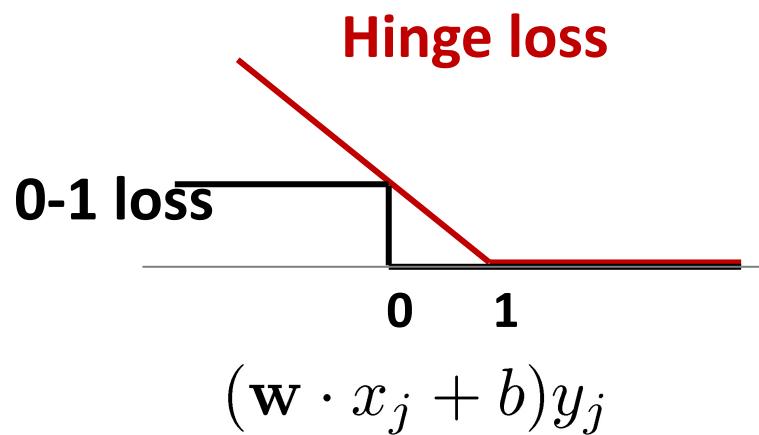
Confidence | Slack

Slack variables – Hinge loss



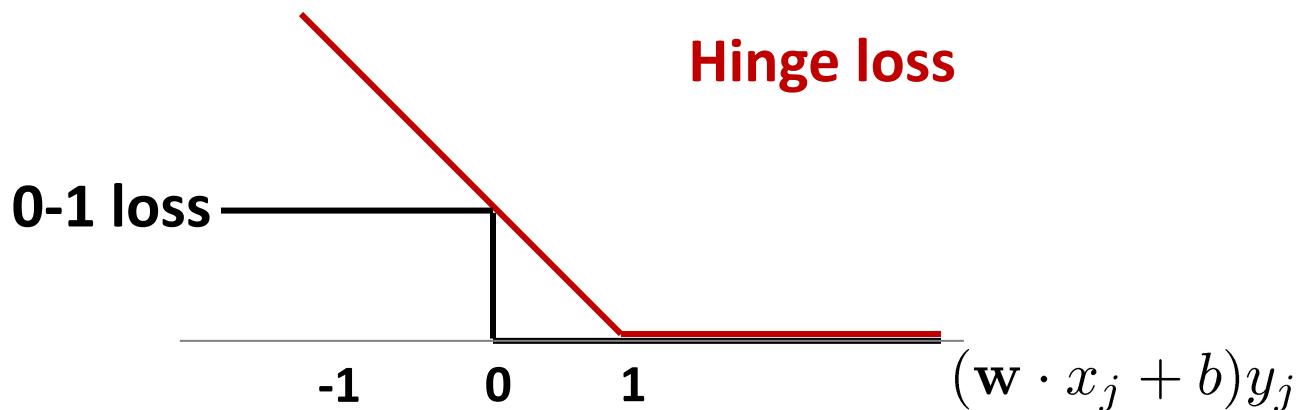
Notice that

$$\xi_j = (1 - (w \cdot x_j + b)y_j)_+$$

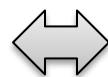


Slack variables – Hinge loss

$$\xi_j = (1 - (\mathbf{w} \cdot \mathbf{x}_j + b)y_j)_+$$



$$\begin{aligned} & \min_{\mathbf{w}, b, \{\xi_j\}} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\ \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b)y_j \geq 1 - \xi_j \quad \forall j \\ & \xi_j \geq 0 \quad \forall j \end{aligned}$$

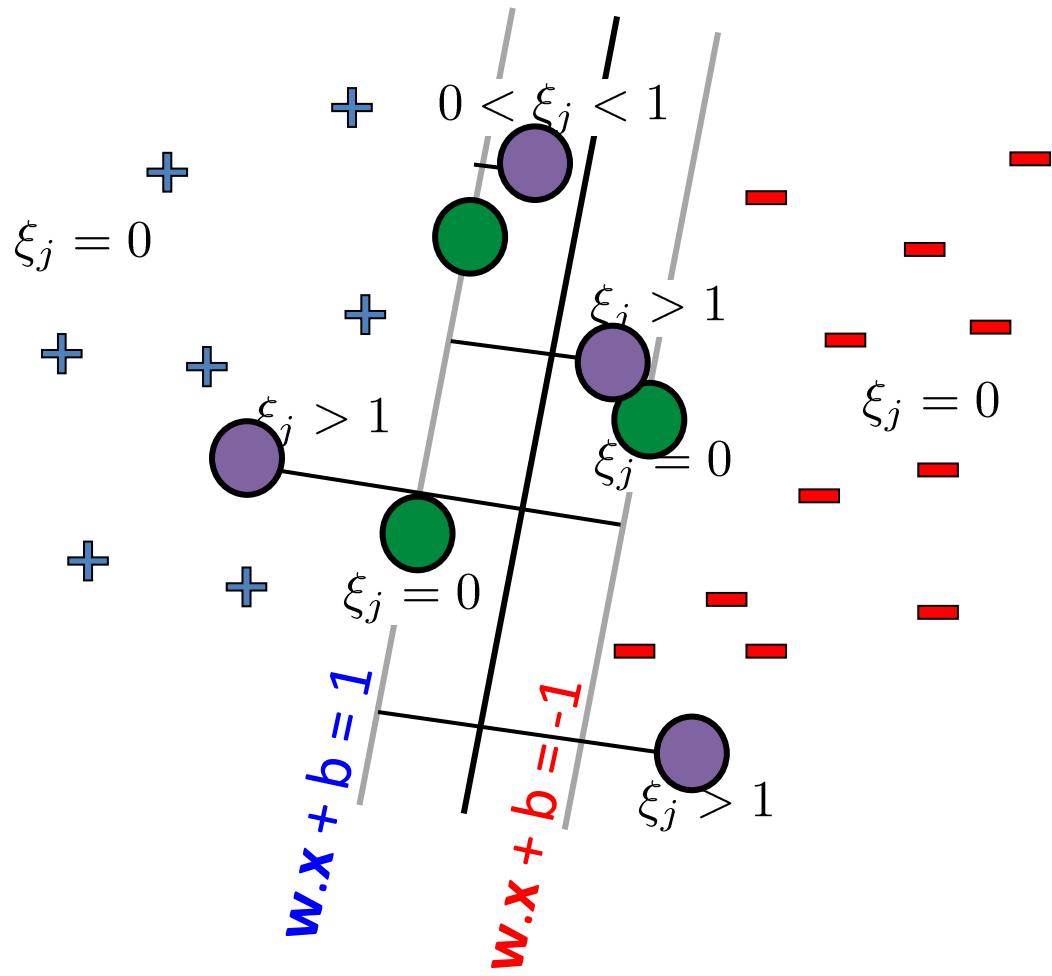


Regularized hinge loss

$$\min_{\mathbf{w}, b} \mathbf{w} \cdot \mathbf{w} + C \sum_j (1 - (\mathbf{w} \cdot \mathbf{x}_j + b)y_j)_+$$

$$\begin{aligned}
 \min_{\mathbf{w}, b, \{\xi_j\}} \quad & \mathbf{w} \cdot \mathbf{w} + C \sum \xi_j \\
 \text{s.t.} \quad & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j \\
 & \xi_j \geq 0 \quad \forall j
 \end{aligned}$$

Support Vectors



Margin support vectors

$\xi_j = 0, (\mathbf{w} \cdot \mathbf{x}_j + b) y_j = 1$
 (don't contribute to objective but enforce constraints on solution)

Correctly classified but on margin

Non-margin support vectors

$\xi_j > 0$
 (contribute to both objective and constraints)

$1 > \xi_j > 0$ Correctly classified but inside margin

$\xi_j > 1$ Incorrectly classified

SVM – linearly separable case

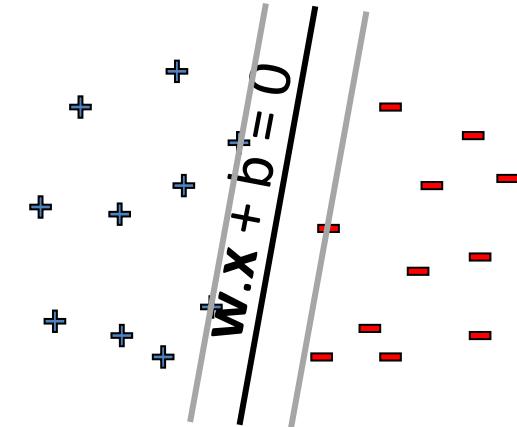
n training points

$(\mathbf{x}_1, \dots, \mathbf{x}_n)$

d features

\mathbf{x}_j is a d-dimensional vector

- Primal problem: $\underset{\mathbf{w}, b}{\text{minimize}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w}$
 $(\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1, \forall j$



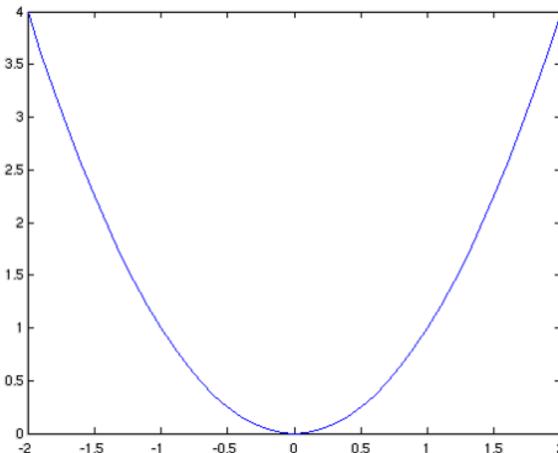
w – weights on features (d-dim problem)

- Convex quadratic program – quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Detour - Constrained Optimization

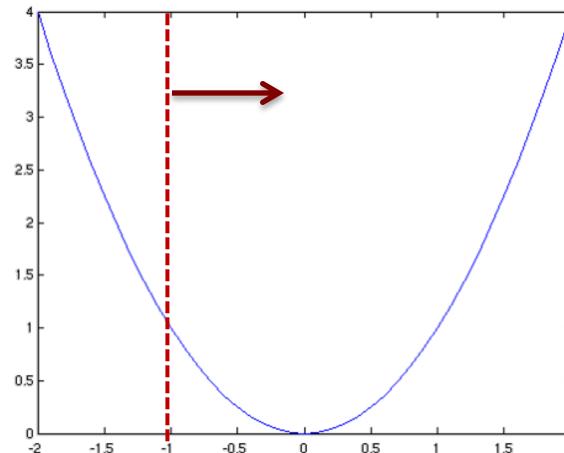
$$\begin{aligned} & \min_x \quad x^2 \\ \text{s.t.} \quad & x \geq b \end{aligned} \quad x^* = \max(b, 0)$$

$$\min_x \quad x^2$$



$$x^* = 0$$

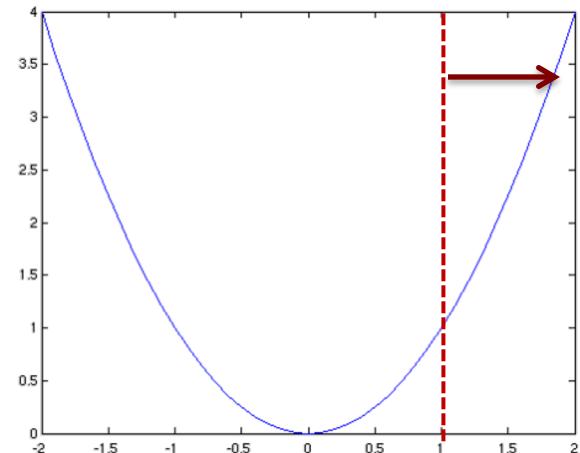
$$\begin{aligned} & \min_x \quad x^2 \\ \text{s.t.} \quad & x \geq -1 \end{aligned}$$



$$x^* = 0$$

Constraint inactive

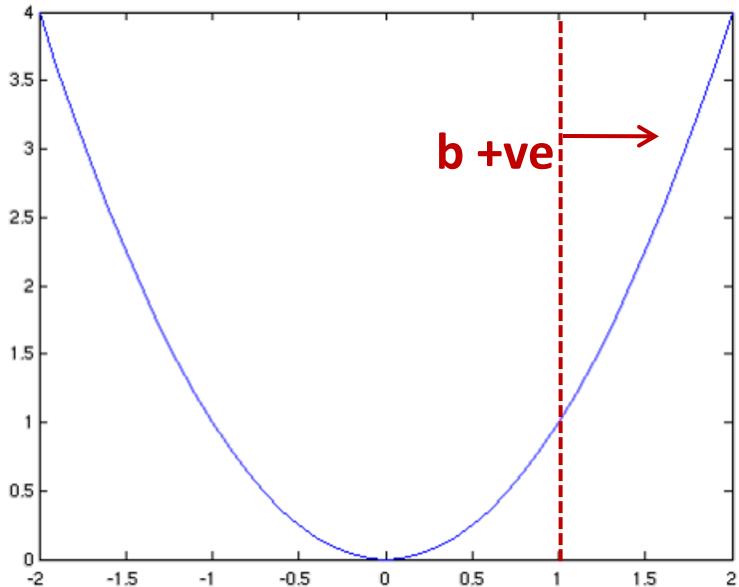
$$\begin{aligned} & \min_x \quad x^2 \\ \text{s.t.} \quad & x \geq 1 \end{aligned}$$



$$x^* = 1$$

Constraint active
(tight)

Constrained Optimization



$$\begin{aligned} & \min_x x^2 \\ \text{s.t. } & x \geq b \end{aligned}$$

Equivalent unconstrained optimization:
 $\min_x x^2 + I(x-b)$

Replace with lower bound ($\alpha \geq 0$)
 $x^2 + I(x-b) \geq \underbrace{x^2 - \alpha(x-b)}_{L(x,\alpha)}$

Primal and Dual Problems

Primal problem: $p^* = \min_x x^2$
s.t. $x \geq b$

Dual problem: $d^* = \max_{\alpha} d(\alpha)$
s.t. $\alpha \geq 0$

$$= \min_x \max_{\alpha \geq 0} L(x, \alpha)$$

$$= \max_{\alpha} \min_x L(x, \alpha)$$

s.t. $\alpha \geq 0$

where Lagrangian $L(x, \alpha) = x^2 - \alpha(x - b)$

How to form the Lagrangian?

For each constraint, introduce a positive Lagrange multiplier
Fold constraints into objective

Why solve the Dual problem?

$$\begin{aligned}\text{Primal problem: } p^* = \min_x \quad & x^2 \\ \text{s.t. } \quad & x \geq b\end{aligned}$$

$$\begin{aligned}\text{Dual problem: } d^* = \max_{\alpha} \quad & d(\alpha) \\ \text{s.t. } \quad & \alpha \geq 0\end{aligned}$$

$$= \min_x \max_{\alpha \geq 0} L(x, \alpha)$$

$$= \max_{\alpha} \min_x L(x, \alpha)$$

➤ Dual problem (maximization) is always concave even if primal is not convex

Why? Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

➤ As many dual variables α as constraints, helpful if fewer constraints than dimension of primal variable x

Connection between Primal and Dual

Primal problem: $p^* = \min_x x^2$
s.t. $x \geq b$

Dual problem: $d^* = \max_{\alpha} d(\alpha)$
s.t. $\alpha \geq 0$

- **Weak duality:** The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \leq p^*$

To see this, recall $L(x, \alpha) = x^2 - \alpha(x - b)$

For every feasible x' (i.e. $x' \geq b$) and feasible α' (i.e. $\alpha' \geq 0$), notice that

$$d(\alpha) = \min_x L(x, \alpha) \leq x'^2 - \alpha'(x' - b) \leq x'^2$$

Since above holds true for every feasible x' , we have $d(\alpha) \leq x^{*2} = p^*$

Connection between Primal and Dual

$$\begin{aligned}\text{Primal problem: } p^* = \min_x & \quad x^2 \\ \text{s.t. } & \quad x \geq b\end{aligned}$$

$$\begin{aligned}\text{Dual problem: } d^* = \max_{\alpha} & \quad d(\alpha) \\ \text{s.t. } & \quad \alpha \geq 0\end{aligned}$$

- **Weak duality:** The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \leq p^*$
- **Strong duality:** $d^* = p^*$ holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \geq b$ i.e. x^* is primal feasible
- 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible
- 4. $\alpha^*(x^* - b) = 0$ (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Primal and Dual Problems

Primal problem: $p^* = \min_x x^2$
s.t. $x \geq b$

Dual problem: $d^* = \max_{\alpha} d(\alpha)$
s.t. $\alpha \geq 0$

$$= \min_x \max_{\alpha \geq 0} L(x, \alpha)$$

$$= \max_{\alpha} \min_x L(x, \alpha)$$

s.t. $\alpha \geq 0$

where Lagrangian $L(x, \alpha) = x^2 - \alpha(x - b)$

How to form the Lagrangian?

For each constraint, introduce a positive Lagrange multiplier
Fold constraints into objective

Dual SVM – linearly separable case

n training points, d features $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ where \mathbf{x}_i is a d-dimensional vector

- Primal problem: $\begin{aligned} & \text{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w} \\ & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1, \quad \forall j \end{aligned}$

w - weights on features (d-dim problem)

- Dual problem (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_j \alpha_j [(\mathbf{w} \cdot \mathbf{x}_j + b) y_j - 1]$$
$$\alpha_j \geq 0, \quad \forall j$$

α - weights on training pts (n-dim problem)

Dual SVM – linearly separable case

- Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_j \alpha_j [(\mathbf{w} \cdot \mathbf{x}_j + b) y_j - 1]$$
$$\alpha_j \geq 0, \quad \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_j \alpha_j y_j \mathbf{x}_j$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_j \alpha_j y_j = 0$$

If we can solve for α s (dual problem), then we have a solution for \mathbf{w} (primal problem)

Dual SVM – linearly separable case

- Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_j \alpha_j [(\mathbf{w} \cdot \mathbf{x}_j + b) y_j - 1]$$

$$\alpha_j \geq 0, \quad \forall j$$

$$\Rightarrow \mathbf{w} = \sum_j \alpha_j y_j \mathbf{x}_j \quad \Rightarrow \sum_j \alpha_j y_j = 0$$

Dual SVM – linearly separable case

$$\text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\begin{aligned} \sum_i \alpha_i y_i &= 0 \\ \alpha_i &\geq 0 \end{aligned}$$

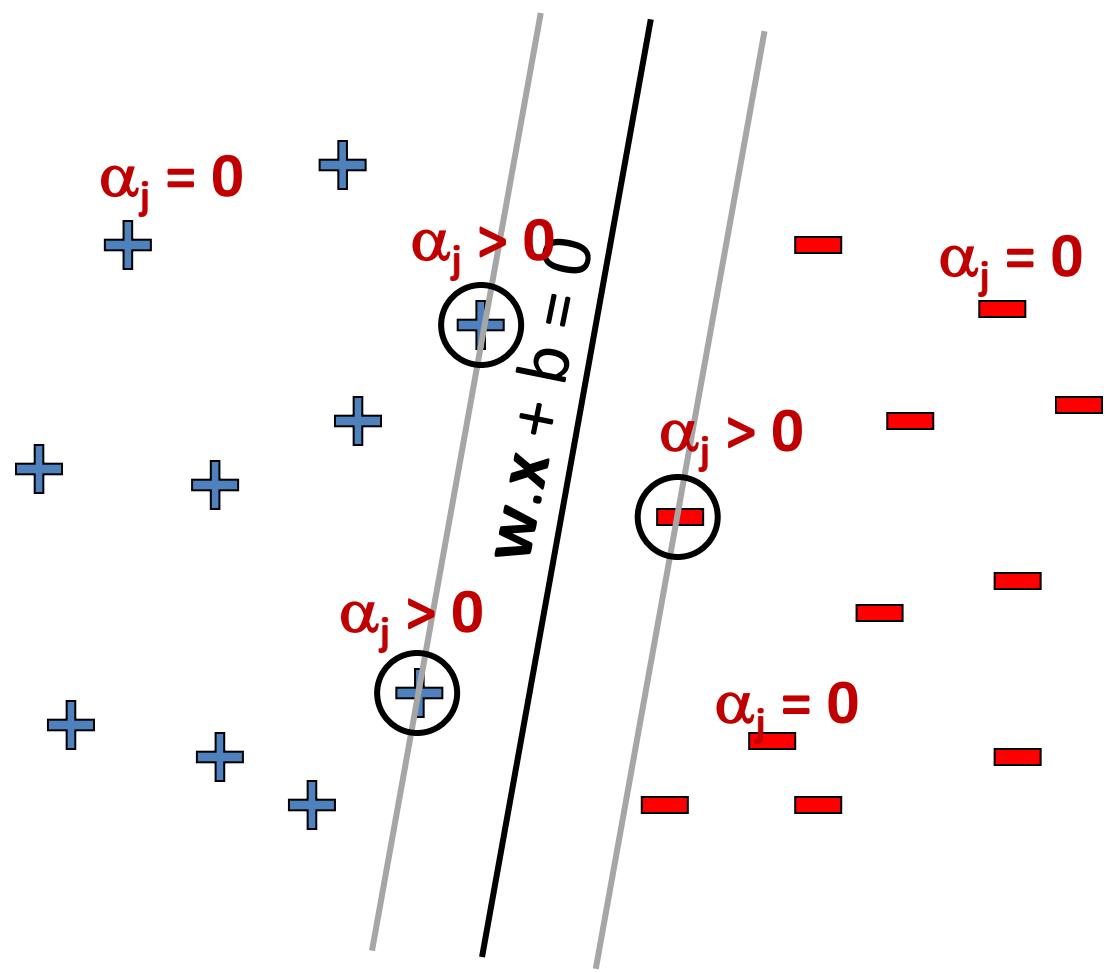
Dual problem is also QP

Solution gives α_j s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

What about b ?

Dual SVM: Sparsity of dual solution



$$\mathbf{w} = \sum_j \alpha_j y_j \mathbf{x}_j$$

Complementary slackness implies
Only few α_j s can be non-zero : where constraint is active and tight

$$(\mathbf{w} \cdot \mathbf{x}_j + b)y_j = 1$$

Support vectors –
training points j whose α_j s are non-zero

Dual SVM – linearly separable case

$$\text{maximize}_{\alpha} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\begin{aligned} \sum_i \alpha_i y_i &= 0 \\ \alpha_i &\geq 0 \end{aligned}$$

Dual problem is also QP

Solution gives α_j s

Use any one of support vectors with $\alpha_k > 0$ to compute b since constraint is tight $(\mathbf{w} \cdot \mathbf{x}_k + b)y_k = 1$

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w} \cdot \mathbf{x}_k$$

for any k where $\alpha_k > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions $d \gg n$)
- But, more importantly, the “**kernel trick**”!!!