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High-Dimensional data

High-Dimensions = Lot of Features

Document classification

Features per document =

thousands of words/unigrams

millions of bigrams, contextual

information

Surveys - Netflix
480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 % ? | 3 ?
George (s ? 3 1 2 5
Susan 4 3 1 ? 5 1
Beth 4 3 ? 2 4 2




High-Dimensional data

* High-Dimensions = Lot of Features

High resolution images
millions of pixels

Diffusion scans of Brain
300,000 brain fibers




Curse of Dimensionality

 Why are more features bad?

— Redundant features (not all words are useful to classify a document)
more noise added than signal

— Hard to interpret and visualize

— Hard to store and process data (computationally challenging)

— Complexity of decision rule tends to grow with # features. Hard to learn
complex rules as it needs more data (statistically challenging)



Dimensionality Reduction

e Feature Selection — Only a few features are relevant to the learning task
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* Latent features — Some linear/nonlinear combination of features provides a
more efficient representation than observed features




Feature Selection

* One Approach: Regularization (MAP)
Integrate feature selection into learning objective by penalizing number of
features with non-zero weights
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Latent Features

Combinations of observed features provide more efficient representation, and
capture underlying relations that govern the data

E.g. Ego, personality and intelligence are hidden attributes that characterize
human behavior instead of survey questions

Topics (sports, science, news, etc.) instead of documents
Often may not have physical meaning

* Linear
Principal Component Analysis (PCA)

Factor Analysis

Independent Component Analysis (ICA)

* Nonlinear
Kernel PCA
Laplacian Eigenmaps, ISOMAP, LLE




Principal Component Analysis (PCA)

D=2
{d=1

When data lies on or near a low d-dimensional linear subspace, axes of
this subspace are an effective representation of the data

|dentifying the axes is known as Principal Components Analysis, and
can be obtained by Eigen or Singular value decomposition



Data for PCA

Data X = [x4, X, ..., Xn] Where each data point x; is D-dimensional vector

X is D x n matrix

1
Assume data are centered i.e. sample mean — E Xi =

What if data is not centered?
Subtract off sample mean from each data point

Since data matrix is centered, sample covariance matrix can be written as

1
S=-XX"
n



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
directions that capture most of the variance
in the data

1st PC — direction of greatest variability in
data

Projection of data points along 1st PC
discriminate the data most along any one
direction

Take a data point xi (D-dimensional vector)

Projection of xi onto the 1st PC v is vTx
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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
unit norm directions that capture most of
the variance in the data

1st PC — direction of greatest variability in
data

2nd PC — Next orthogonal (uncorrelated)
direction of greatest variability

(remove all variability in first direction, then
find next direction of greatest variability)

And soon ...

11




Prmapal Component Analysis ( PCA)

Let v1, v2, ..., vd denote the principal components

Orthogonal and unitnorm  viTv;=0 i#]j

ViT Vi = 1

Find vector that maximizes sample variance of projection

S|+

X

n
Z (VT)(7;)2 = vIXX!y
—

n

mélx vIXXTy st. viv=1

Poll:

> Is this a convex optimization problem?
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Principal Component Analysis (PCA)

Let v1, v2, ..., vd denote the principal components
Orthogonal and unitnorm  viTv;=0 i#]

ViT Vi = 1

Find vector that maximizes sample variance of projection

S|+

n
> (vi'x)? = vIXXTy
1=1 n

mélx vIXXTy st. viv=1

Lagrangian: maxy vIXXTy — azyTy  Wrap constraints into the
objective function

9/0v =0 (XXT — A)v = 0 = (XXT)v = Av
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Principal Component Analysis (PCA)

(XXDYyv = Av

Therefore, v is the eigenvector of sample covariance

matrix XXT

Sample variance of projection =vIXXTv = xvlv =2

Thus, the eigenvalue A denotes the amount of variability captured along
that dimension (aka amount of energy along that dimension).

Eigenvalues A1 > A2 > A3 > ..,

The 1st Principal component v1 is the eigenvector of the sample covariance
matrix XXT associated with the largest eigenvalue A1

The 2" Principal component vz is the eigenvector of the sample covariance
matrix XXT associated with the second largest eigenvalue A2

And soon ... 14



Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the
vectors capture maximum variance in the data

S|+

n
> (vix,)? =vIXXTv

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the

vectors yields minimum MSE reconstruction
Xi~(VTX))V

1 5
— Z HXz (V Xz)VH
n i=1
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Dimensionality Reduction using PCA

The eigenvalue A denotes the amount of variability captured along
that dimension.

Zero eigenvalues indicate no variability along those directions =>
data lies exactly on a linear subspace

Only keep data projections onto principal components with non-

o O  Mw

=N

zero eigenvalues, say vi, ..., vawhere d = rank (XXT)

Original Representation Transformed representation
data point projections
xi = [xil, xi2, .... xP]T [ViTxi, v2TxXi, ... vdTXi]
(D-dimensional vector) (d-dimensional vector)

17



Dimensionality Reduction using PCA

In high-dimensional problem, data usually lies near a linear subspace, as
noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance.

25 -
20 - Variance (%) = ratio of variance along given
— principal component to total variance of all
2 ..
o 107 principal components
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You might lose some information, but if the eigenvalues are small, you don’t lose
much 18



Example of PCA

0.0 0.2 0.4 0.6 0.8 1.0

eigenvalues normalized by trace

Eigenvectors and eigenvalues of
covariance matrix for n=1600

inputs in d=3 dimensions.




Example: faces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)




Example: MNIST digits

* 28x28 images = 784 PCA vectors
* Project to K dimensional space and then project back up

90% of Explained Varance 50% of Explained Variance
]

plained Variance

Onginal Image

80% of Explained Variance

S W 15 20 28 s 10 135 20 25 5 10 15 0 S W 15 20 28 s 10 15 20 25
784 components 154 components 87 components 43 components 11 components

Original Image 95% of Explained Variance 80% of Explained Variarnce 50% of Explained Variance

90% of Explained Variance
bl o
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784 components 154 components 87 components 43 components 11 compenents

90% of Explained Vanance 80% of Explained Variance 50% of Explained Variance

plained Variance

Onginal Image
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Projecting MINIST digits
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Projecting MNIST digits
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Unsupervised Dimensionality
Reduction

Linear
Principal Component Analysis (PCA)

Factor Analysis
Independent Component Analysis (ICA)

Nonlinear
Kernel PCA
Laplacian Eigenmaps, ISOMAP, LLE

Autoencoders

24



Kernel PCA HWA4!

Latent features: linear in ¢(x) where ¢(x). ¢(x’) = K(x,x’) that capture
maximum variance or minimum reconstruction error

* class 1 Gaussian kernel PCA

O  class2 standard PCA & o
2r O class 2

100

50

=100+

.
. . .
-150 -100 -50 0 50 100 =6 =4 -2 0 2 4 6 8

Original data points PCA Kernel PCA
Gaussian/RBF kernel

Src: ArXiv 1207.3538



Kernel PCA HW4!

Latent features: linear in ¢(x) where ¢(x). ¢(x’) = K(x,x’) that capture
maximum variance or minimum reconstruction error

PCA:

Top d eigenvectors (each D dimensional) of sample covariance XXT

Low d-dimensional embedding of a point: [viTxi, v2Txi, ... vdTxi]

Kernel PCA:

Top d eigenvectors (each n dimensional) of kernel matrix K(X,X)

Low d-dimensional embedding of a point: [v(i), Va(i), ..., v4(i)]

Eigenvectors are not PCs but projections of data points



PCA Summary

PCA finds latent features linear in original features x that capture
— Maximum variance amongst all linear features

— Minimum reconstruction error when recovering points from PC
projections

Non-convex problem with simple solution:
PCs = eigenvectors of sample covariance matrix

Lower (d < D) dimensional embedding of data point =
projection of data point onto d PCs

Kernel PCA: latent features linear in ¢(x) where ¢(x). ¢p(x’) = K(x,x’)
that capture maximum variance or minimum reconstruction error
— Directly get projections of data points





