

Clustering

Aarti Singh

Machine Learning 10-315
Apr 6, 2022

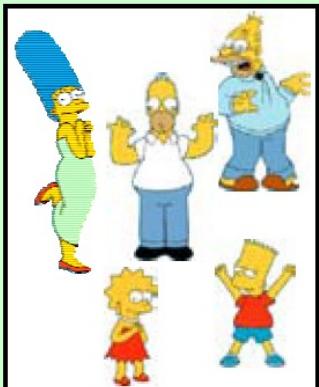
Some slides courtesy of Eric Xing, Carlos Guestrin

MACHINE LEARNING DEPARTMENT

What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
 - high intra-class similarity
 - low inter-class similarity
 - It is the most common form of **unsupervised learning**

Clustering is subjective



Simpson's Family

School Employees

Females

Males

What is Similarity?

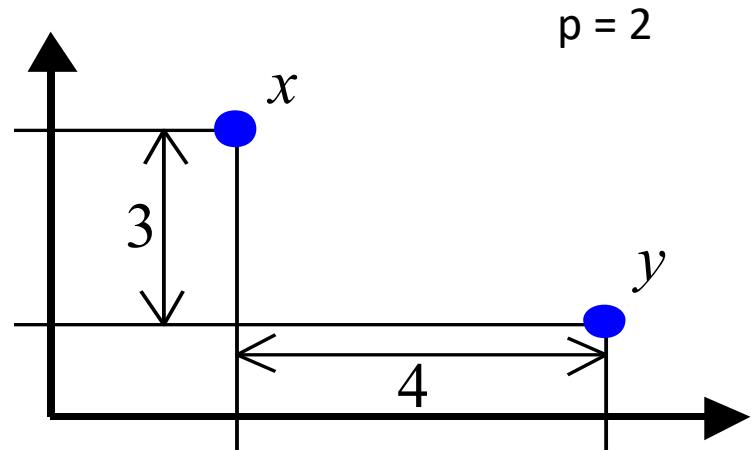
Hard to
define! But we
*know it when
we see it*

- The real meaning of similarity is a philosophical question. We will take a more pragmatic approach - think in terms of a distance (rather than similarity) between vectors or correlations between random variables.

Distance metrics

$$x = (x_1, x_2, \dots, x_p)$$

$$y = (y_1, y_2, \dots, y_p)$$



Euclidean distance

$$d(x, y) = \sqrt{ \sum_{i=1}^p |x_i - y_i|^2 } \quad 5$$

Manhattan distance

$$d(x, y) = \sum_{i=1}^p |x_i - y_i| \quad 7$$

Sup-distance

$$d(x, y) = \max_{1 \leq i \leq p} |x_i - y_i| \quad 4$$

Correlation coefficient

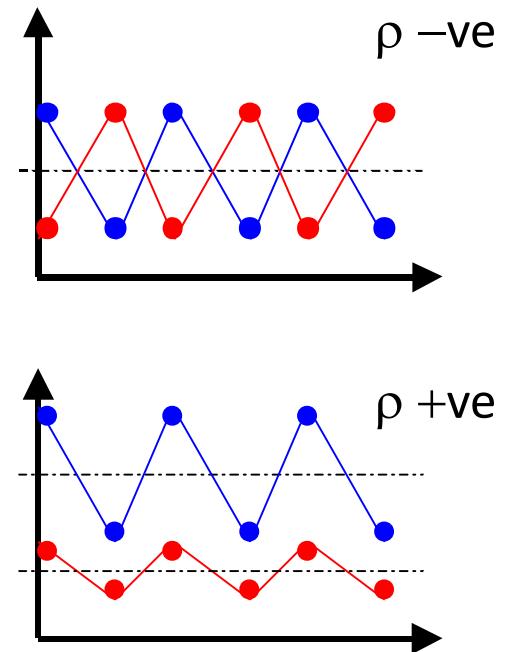
$$\begin{aligned}x &= (x_1, x_2, \dots, x_p) \\y &= (y_1, y_2, \dots, y_p)\end{aligned}$$

Random vectors (e.g. expression levels of two genes under various drugs)

Pearson correlation coefficient

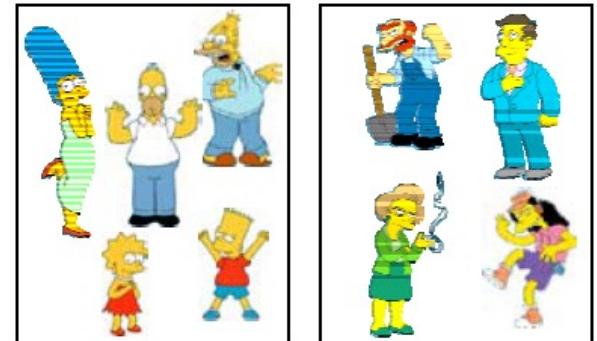
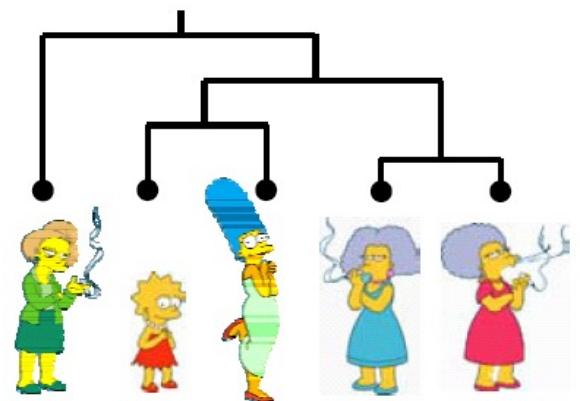
$$\rho(x, y) = \frac{\sum_{i=1}^p (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^p (x_i - \bar{x})^2 \times \sum_{i=1}^p (y_i - \bar{y})^2}}$$

$$\text{where } \bar{x} = \frac{1}{p} \sum_{i=1}^p x_i \text{ and } \bar{y} = \frac{1}{p} \sum_{i=1}^p y_i.$$



Clustering Algorithms

- **Partition algorithms**
 - K means clustering
 - Mixture-Model based clustering
- Hierarchical algorithms
 - Single-linkage
 - Average-linkage
 - Complete-linkage
 - Centroid-based



Partitioning Algorithms

- Partitioning method: Construct a partition of n objects into a set of K clusters
- Given: a set of objects and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic method: K-means algorithm

K-Means

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate –

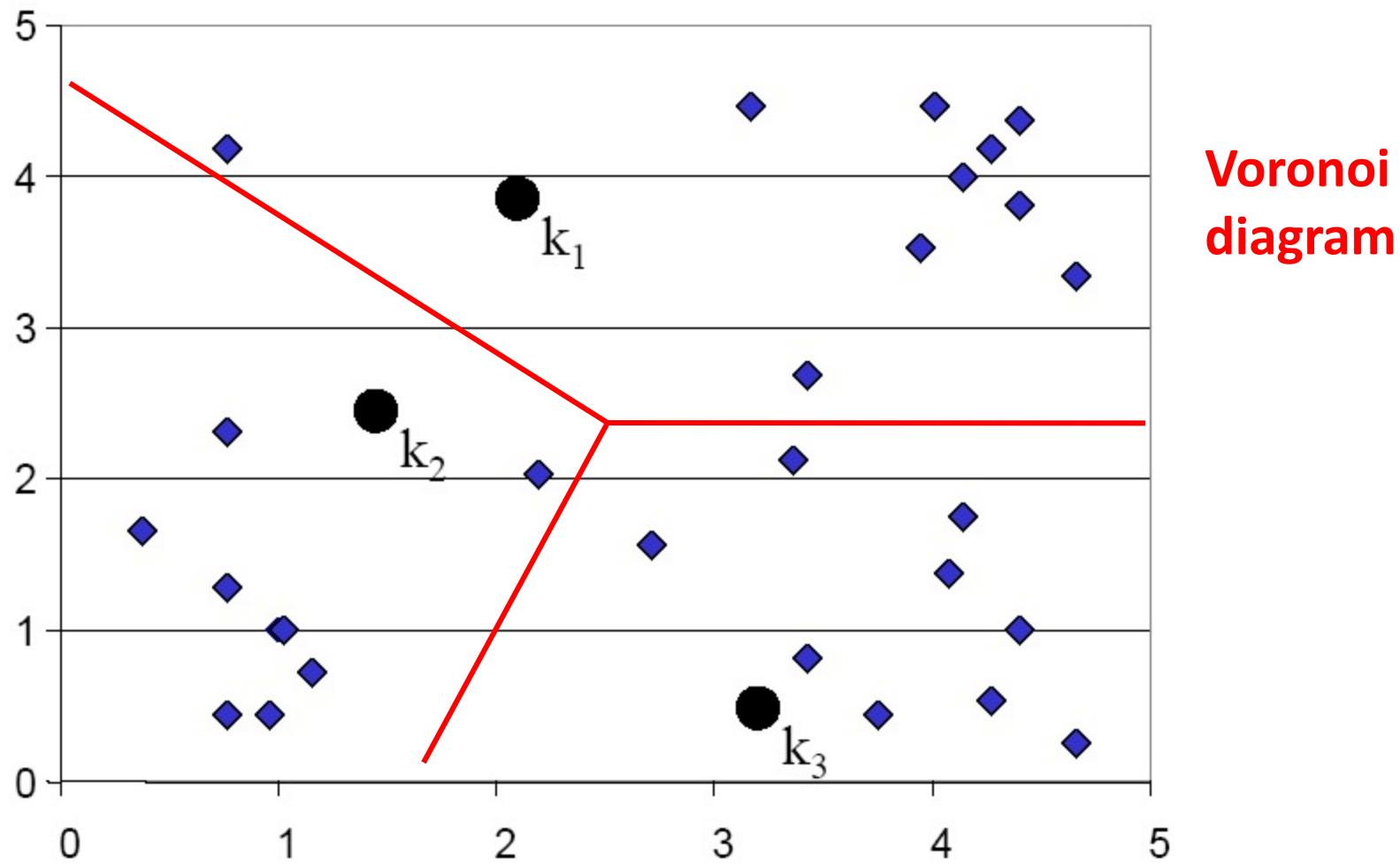
1. Assign points to the nearest cluster centers
2. Re-estimate the k cluster centers (aka the **centroid** or **mean**), by assuming the memberships found above are correct.

$$\vec{\mu}_k = \frac{1}{C_k} \sum_{i \in C_k} \vec{x}_i$$

Termination –

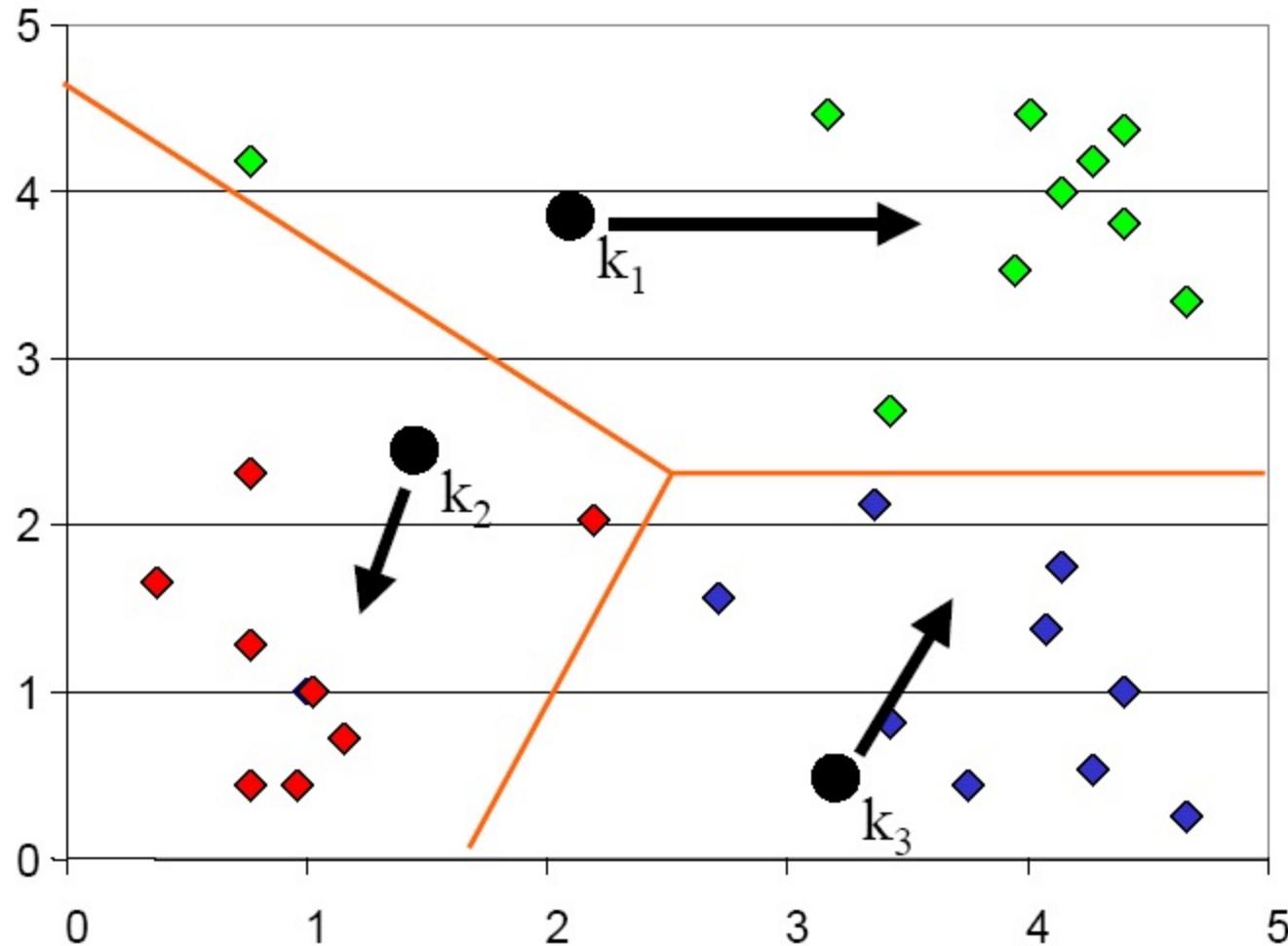
If none of the objects changed membership in the last iteration, exit.
Otherwise go to 1.

K-means Clustering: Step 1

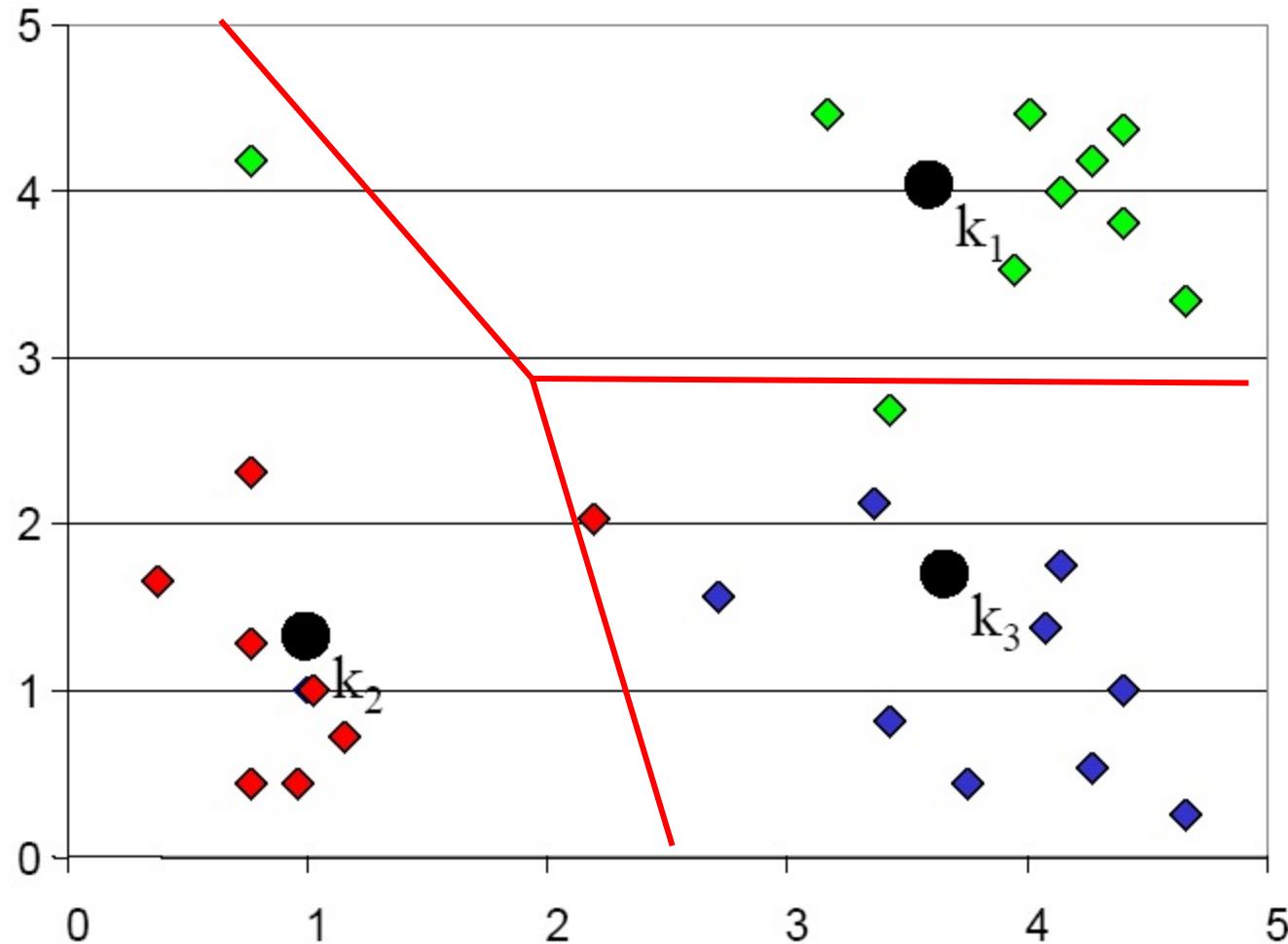


Voronoi
diagram

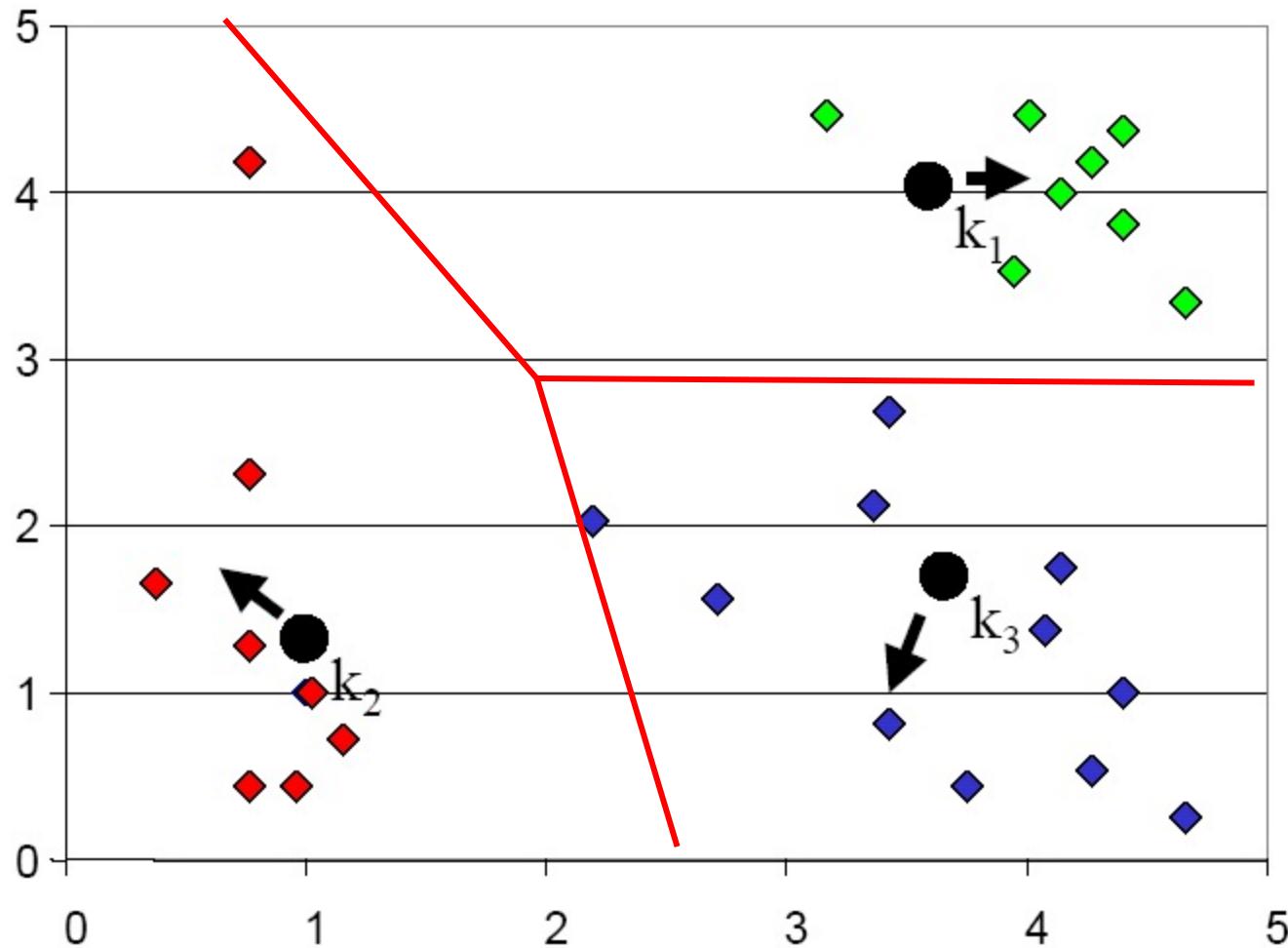
K-means Clustering: Step 2



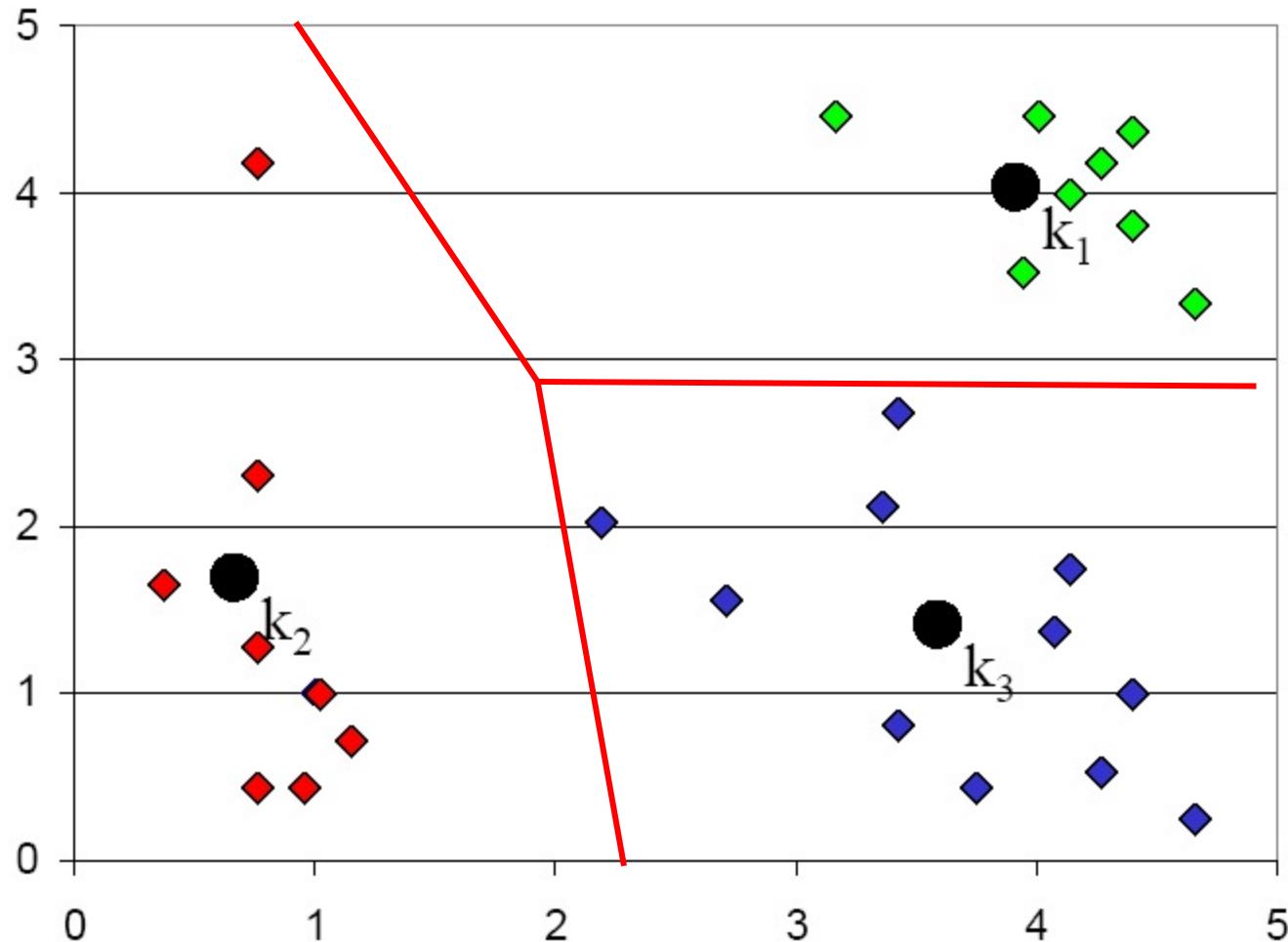
K-means Clustering: Step 3



K-means Clustering: Step 4



K-means Clustering: Step 5



K-means Recap ...

- Randomly initialize k centers
 - $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

K-means Recap ...

- Randomly initialize k centers
 - $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Iterate $t = 0, 1, 2, \dots$

- **Classify:** Assign each point $j \in \{1, \dots, m\}$ to nearest center:
 - $C^{(t)}(j) \leftarrow \arg \min_{i=1, \dots, k} \|\mu_i^{(t)} - x_j\|^2$

K-means Recap ...

- Randomly initialize k centers
 - $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Iterate $t = 0, 1, 2, \dots$

- **Classify:** Assign each point $j \in \{1, \dots, m\}$ to nearest center:
 - $C^{(t)}(j) \leftarrow \arg \min_{i=1, \dots, k} \|\mu_i^{(t)} - x_j\|^2$
- **Recenter:** μ_i becomes centroid of its points:
 - $\mu_i^{(t+1)} \leftarrow \arg \min_{\mu} \sum_{j: C^{(t)}(j)=i} \|\mu - x_j\|^2 \quad i \in \{1, \dots, k\}$
 - Equivalent to $\mu_i \leftarrow \text{average of its points!}$

What is K-means optimizing?

- Potential function $F(\mu, C)$ of centers μ and point allocations C :

$$\begin{aligned} F(\mu, C) &= \sum_{j=1}^m \|\mu_{C(j)} - x_j\|^2 \\ &= \sum_{i=1}^k \sum_{j:C(j)=i} \|\mu_i - x_j\|^2 \end{aligned}$$

- Optimal K-means:
 - $\min_{\mu} \min_C F(\mu, C)$
 - Is the K-means objective convex?

K-means algorithm

- Optimize potential function:

$$\min_{\mu} \min_C F(\mu, C) = \min_{\mu} \min_C \sum_{i=1}^k \sum_{j: C(j)=i} \|\mu_i - x_j\|^2$$

- K-means algorithm:** (coordinate descent on F)

(1) Fix μ , optimize C

Expected cluster assignment

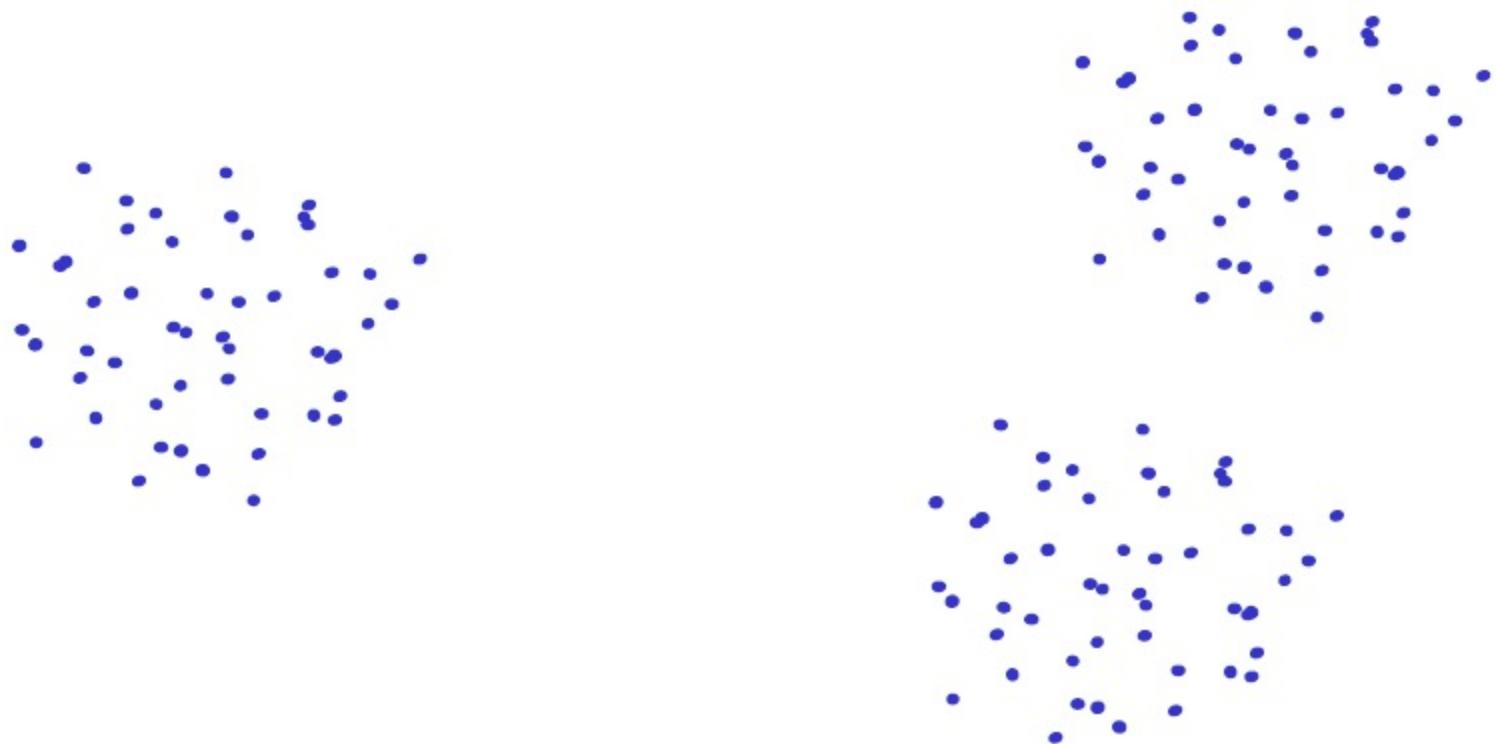
(2) Fix C , optimize μ

Maximum likelihood for center

Generalization: EM (Expectation-Maximization) algorithm

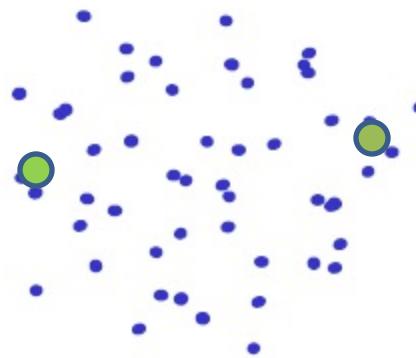
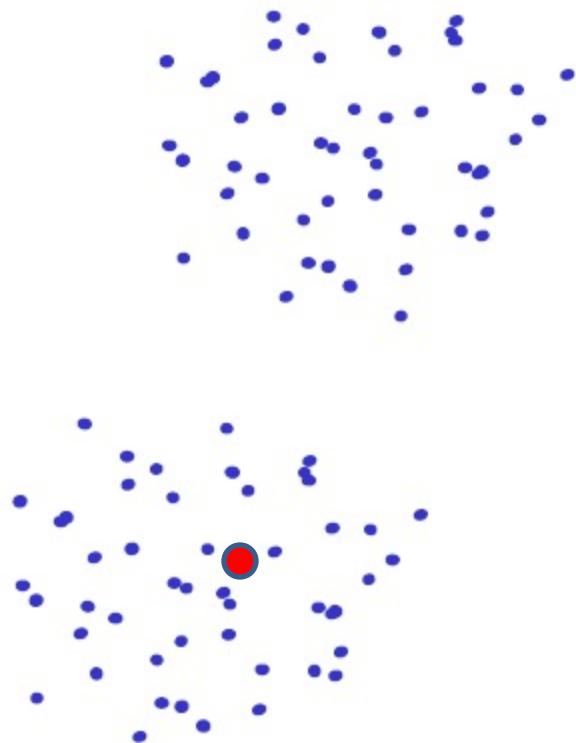
Seed Choice

- Results are quite sensitive to seed selection.



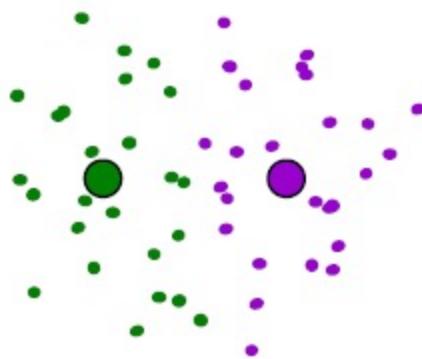
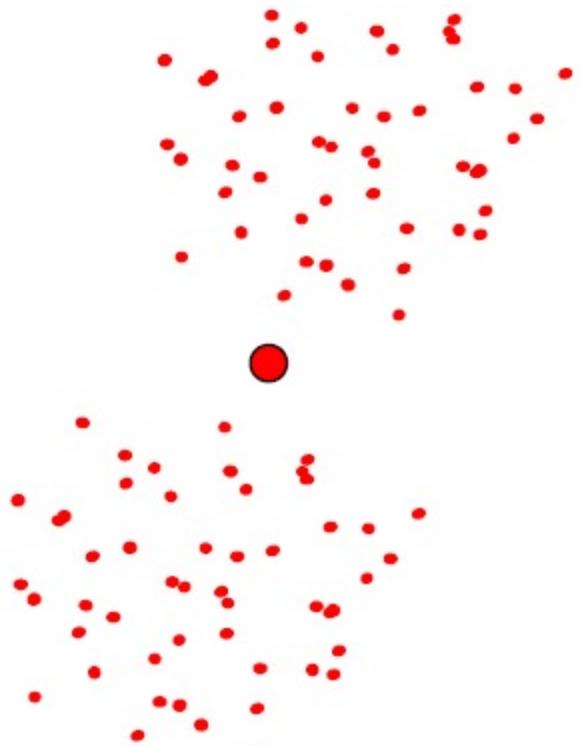
Seed Choice

- Results are quite sensitive to seed selection.



Seed Choice

- Results are quite sensitive to seed selection.



Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
 - k-means ++ algorithm of Arthur and Vassilvitskii
 - key idea: choose centers that are far apart
 - (probability of picking a point as cluster center \propto distance from nearest center picked so far)

Other Issues

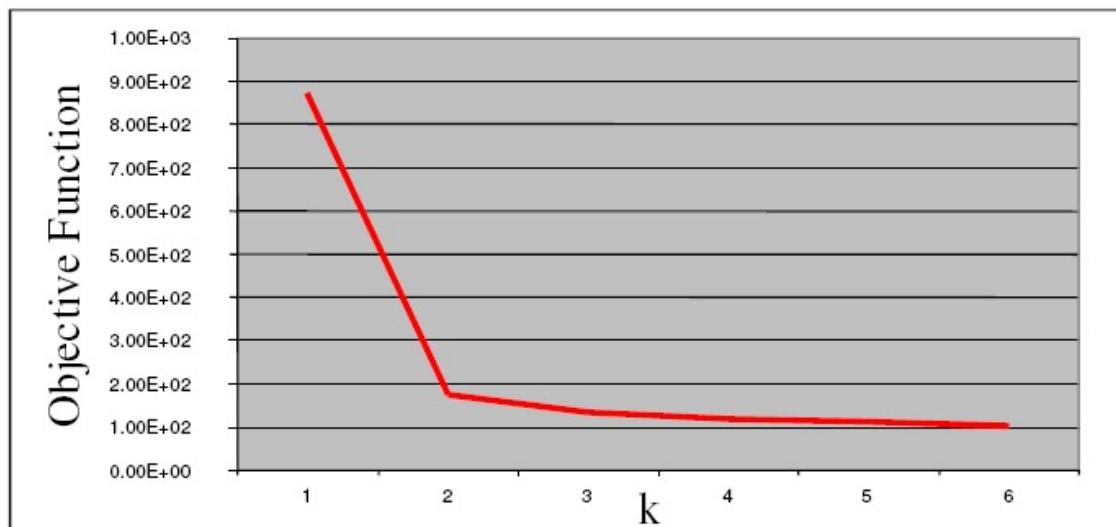
- Number of clusters K

- Objective function

$$\sum_{j=1}^m \|\mu_{C(j)} - x_j\|^2$$

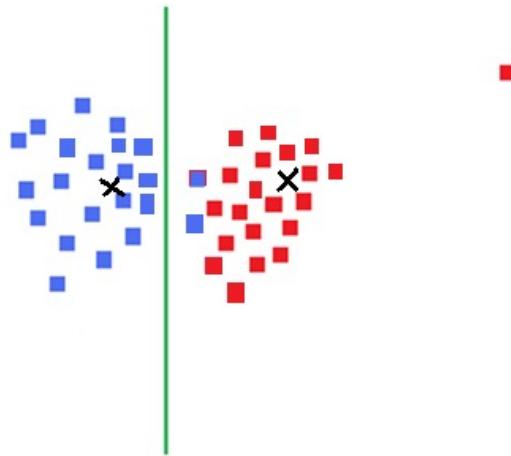
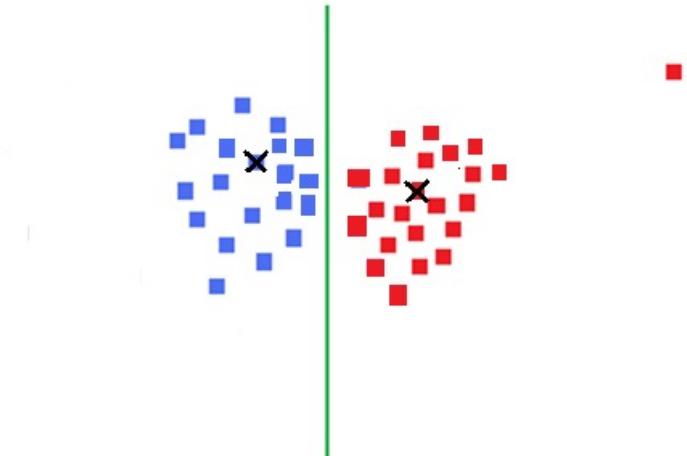
➤ Can you pick K by minimizing the objective over K?

- Look for “Knee” in objective function



Other Issues

- Sensitive to Outliers
 - use K-medoids



- Shape of clusters
 - Assumes isotropic, equal variance, convex clusters

Partitioning Algorithms

- K-means
 - **hard assignment**: each object belongs to only one cluster
- Mixture modeling
 - **soft assignment**: probability that an object belongs to a cluster

Generative approach