

Neural Networks

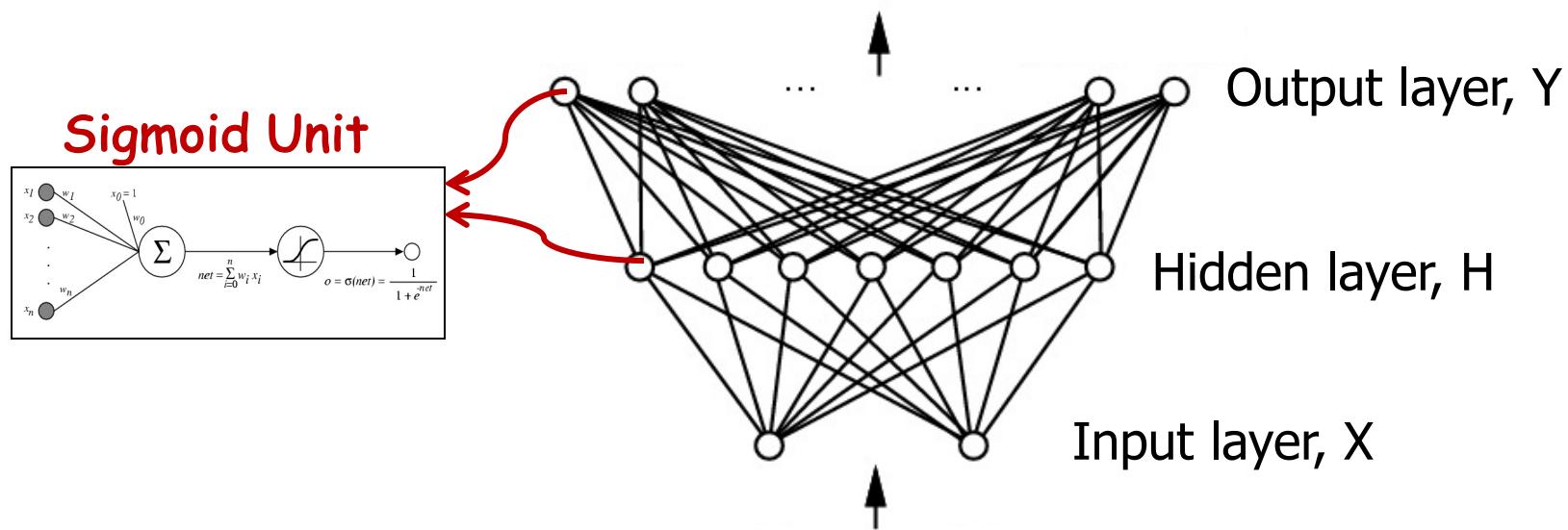
Aarti Singh

Machine Learning 10-315
Feb 16, 2022

MACHINE LEARNING DEPARTMENT

Neural Networks to learn $f: X \rightarrow Y$

- f can be a **non-linear** function
- X (vector of) continuous and/or discrete variables
- Y (**vector** of) continuous and/or discrete variables
- Neural networks - Represent f by network of sigmoid (more recently ReLU – next lecture) units :



Training Neural Networks – L2 loss

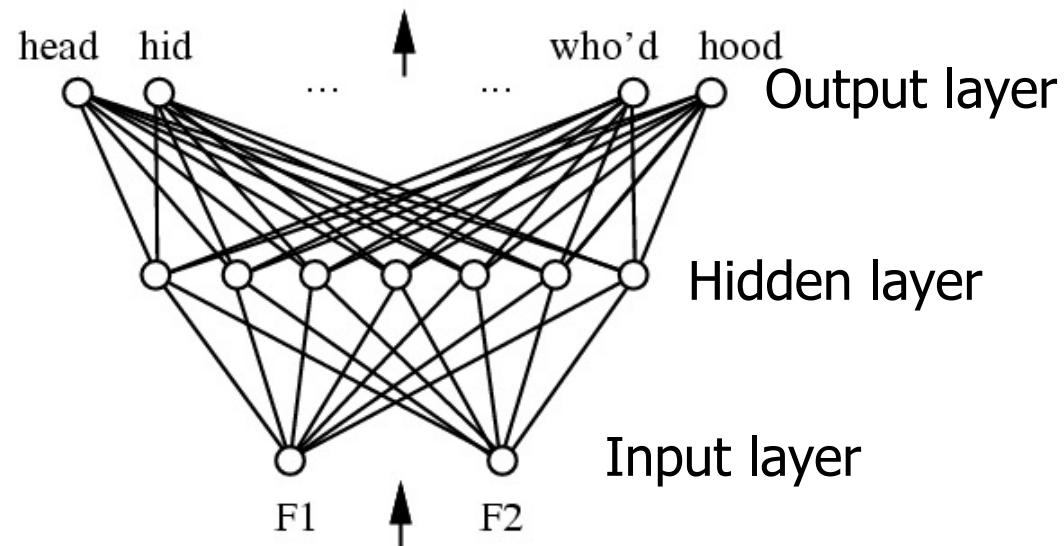
Train weights of all units to minimize sum of squared errors of predicted network outputs

$$W \leftarrow \arg \min_W \sum_l (y^l - \hat{f}(x^l))^2$$

$E[\mathcal{W}]$

Output of learned neural network

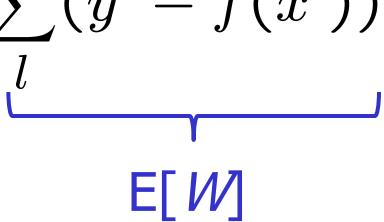
- Objective $E[\mathcal{W}]$ is no longer convex in \mathcal{W} .
- Still use Gradient descent to minimize $E[\mathcal{W}]$.
- Training is slow with lot of data and lot of weights!



Stochastic gradient descent

Stochastic gradient descent (SGD): Simplify computation by using a single data point at each iteration (instead of sum over all data points)

$$W \leftarrow \arg \min_W \sum_l (y^l - \hat{f}(x^l))^2$$



At each iteration of gradient descent

- Approximate $E[W] \approx (y^l - \hat{f}(x^l))^2$
- Stochastic Gradient =

Cycle through all points, then restart OR choose random data point at each iteration

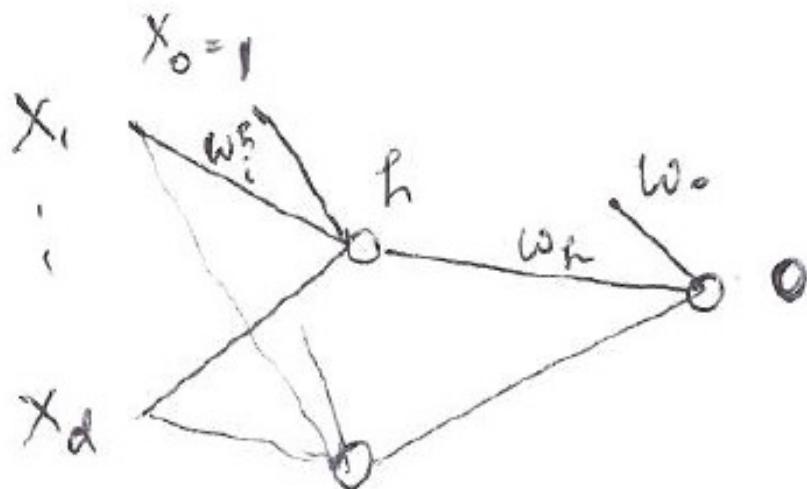
Backpropagation

Backpropagation: Efficient implementation of (Stochastic) Gradient descent for Neural networks

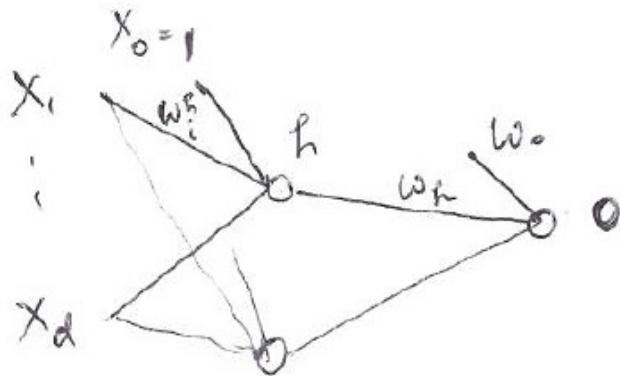
chain rule for gradients

+

layer-wise computation
(going backward from output to input)



Gradient Descent for 1 hidden layer 1 output NN



$$o = \sigma(w_o + \sum_h w_h o_h)$$

$$o_h = \sigma(w_h^T + \sum_i w_i^h x_i)$$

Gradient of the output with respect to one **final** layer weight w_h

$$\frac{\partial o}{\partial w_h} = o(1 - o)o_h$$

Backpropagation Algorithm using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do

1. Input the training example to the network
and compute the network outputs

→ Using Forward propagation

- 2.

$$\delta \leftarrow o(1 - o)(y - o)$$

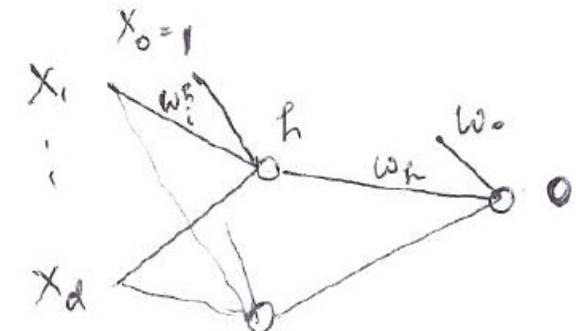
- 3.

4. Update each network weight w_h

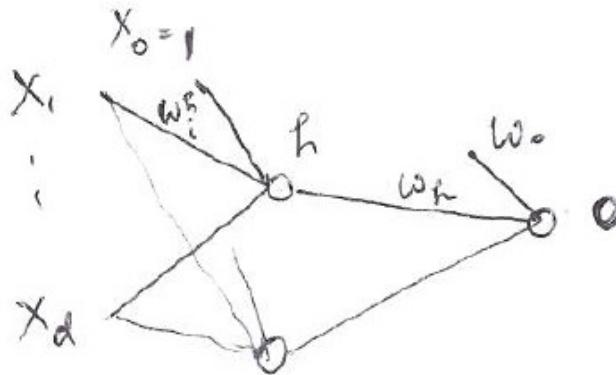
$$w_h \leftarrow w_h + \Delta w_h$$

where

$$\Delta w_h = \eta \delta o_h$$



Gradient Descent for 1 hidden layer 1 output NN



$$o = \sigma(w_o + \sum_h w_h o_h)$$

$$o_h = \sigma(w_h^h + \sum_i w_i^h x_i)$$

Gradient of the output with respect to one **final** layer weight w_h

$$\frac{\partial o}{\partial w_h} = o(1 - o)o_h$$

Gradient of the output with respect to one **hidden** layer weight w_i^h

$$\frac{\partial o}{\partial w_i^h} = \frac{\partial o}{\partial o_h} \cdot \frac{\partial o_h}{\partial w_i^h} = o(1 - o)w_h \cdot o_h(1 - o_h)x_i$$

Backpropagation Algorithm using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do

1. Input the training example to the network
and compute the network outputs

→ Using Forward propagation

- 2.

$$\delta \leftarrow o(1 - o)(y - o)$$

3. For each hidden unit h

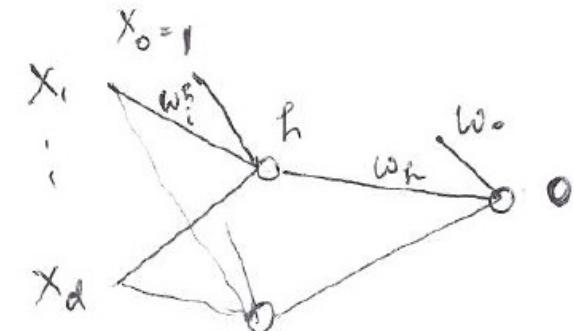
$$\delta_h \leftarrow o_h(1 - o_h)w_h\delta$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j o_i$$



w_{ij} = wt from i to j

Note: if i is input
variable, $o_i = x_i$

Backpropagation Algorithm using Stochastic gradient descent

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do

1. Input the training example to the network
and compute the network outputs

Using Forward propagation

2. For each output unit k

$$\delta_k \leftarrow o_k(1 - o_k)(y_k - o_k)$$

3. For each hidden unit h

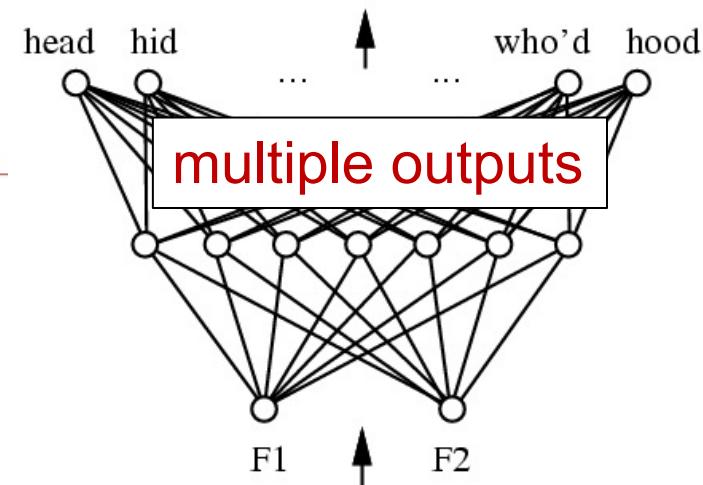
$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j o_i$$



y_k = label of current
training example for
output unit k

o_k or o_h = unit output
(obtained by forward
propagation)

w_{ij} = wt from i to j

Note: if i is input variable,
 $o_i = x_i$

More on Backpropagation

- Gradient descent over entire *network* weight vector
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Objective/Error no longer convex in weights

HW2

- Cross-entropy error metric for multi-class classification
 - $-\sum_k y_k \log \hat{y}_k$ loss for single data point

One-hot encoding – encode label as a vector $[y_1, y_2, \dots y_K]$
where $y_k = 1$ if label is k and 0 otherwise

Interpret vector as probability distribution

HW2

- Classification – cross-entropy error metric for multi-class classification

$$-\sum_k y_k \log \hat{y}_k$$

Entropy of a random variable X:

$$E_{X \sim p}[-\log p(X)] \quad \text{small } p(X) \Rightarrow \text{more information}$$

$-\log p(X)$ = number of bits needed to encode an outcome X when we know true distribution p

Cross-entropy = expected number of bits needed to encode a random draw of X when using distribution q

$$E_{X \sim p}[-\log q(X)] \quad \text{Minimized when } q=p$$

HW2

- Classification – cross-entropy error metric for multi-class classification

$$-\sum_k y_k \log \hat{y}_k$$

Cross-entropy = expected number of bits needed to encode a random draw of X when using distribution q

$$E_{X \sim p}[-\log q(X)]$$

Interpret one-hot-encoding y and \hat{y} as distributions.

HW2

- Can implement backpropagation with matrix-vector products
 - uses matrix-vector calculus heavily

Caution: Denominator vs Numerator layout

https://en.wikipedia.org/wiki/Matrix_calculus

Poll

Which of the following classifiers are discriminative?

- A. Gaussian Naïve Bayes
- B. Logistic Regression
- C. Neural Networks

Which of these classifiers can exactly represent an XOR function?

Deep Networks

Aarti Singh

Machine Learning 10-315
Feb 16, 2022

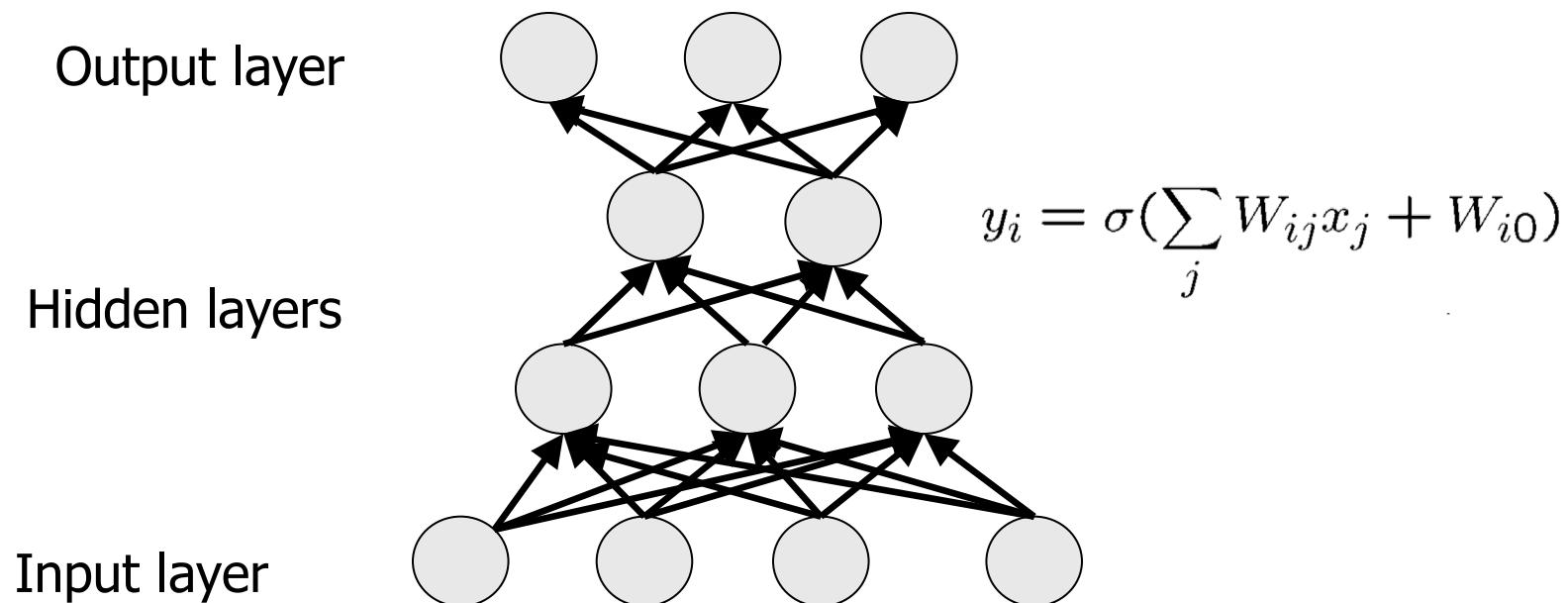
Slides Courtesy: Barnabas Poczos, Ruslan Salakhutdinov, Joshua Bengio,
Geoffrey Hinton, Yann LeCun, Pat Virtue

MACHINE LEARNING DEPARTMENT



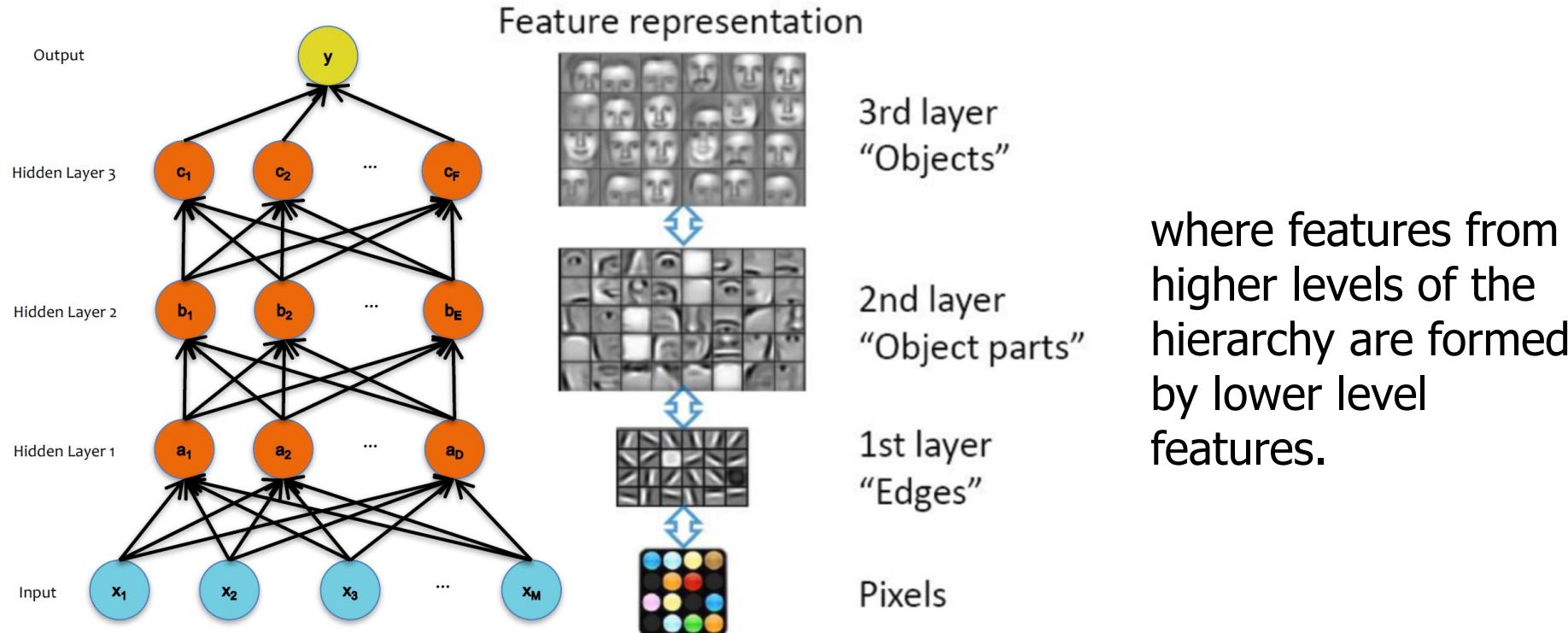
Deep architectures

Definition: Deep architectures are composed of *multiple levels* of non-linear operations, such as neural nets with many hidden layers.



Goal of Deep architectures

Goal: Deep learning methods aim at learning *feature hierarchies*



where features from higher levels of the hierarchy are formed by lower level features.

Example from Honglak Lee (NIPS 2010)

- Neurobiological motivation: The mammal brain is organized in a deep architecture (Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio, 2007) (E.g. visual system has 5 to 10 levels)

Deep Learning History

- **Inspired** by the architectural depth of the brain, researchers wanted for decades to train deep multi-layer neural networks.
- **No** very **successful** attempts were reported before 2006 ...
 - Researchers reported positive experimental results with typically two or three levels (i.e. one or two hidden layers), but training deeper networks consistently yielded poorer results.
- **SVM**: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture.
- **Digression**: In the 1990's, many researchers abandoned neural networks with multiple adaptive hidden layers because SVMs worked better, and there was no successful attempts to train deep networks.
- **GPUs + Large datasets -> Breakthrough in 2006**

Breakthrough

Deep Belief Networks (DBN)

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Autoencoders

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).
Greedy Layer-Wise Training of Deep Networks,
Advances in Neural Information Processing Systems 19

Convolutional neural networks running on GPUs (2012)

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, Advances in Neural Information Processing Systems 2012

Deep Convolutional Networks

Convolutional Neural Networks

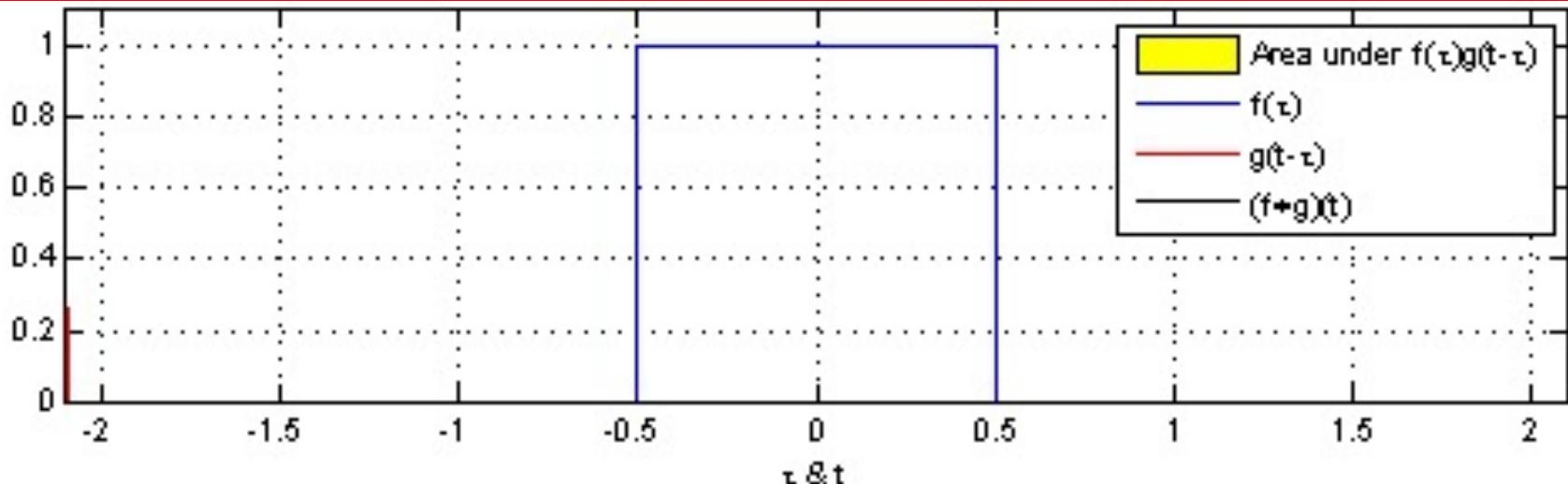
Compared to standard feedforward neural networks with similarly-sized layers,

- CNNs have much fewer connections and shared parameters
- and so they are easier to train,
- while their performance is likely to be only slightly worse, particularly for images as inputs.

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: **Gradient-Based Learning Applied to Document Recognition**, *Proceedings of the IEEE*, 86(11):2278-2324, November **1998**

Convolution



Continuous functions:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau = \int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau.$$

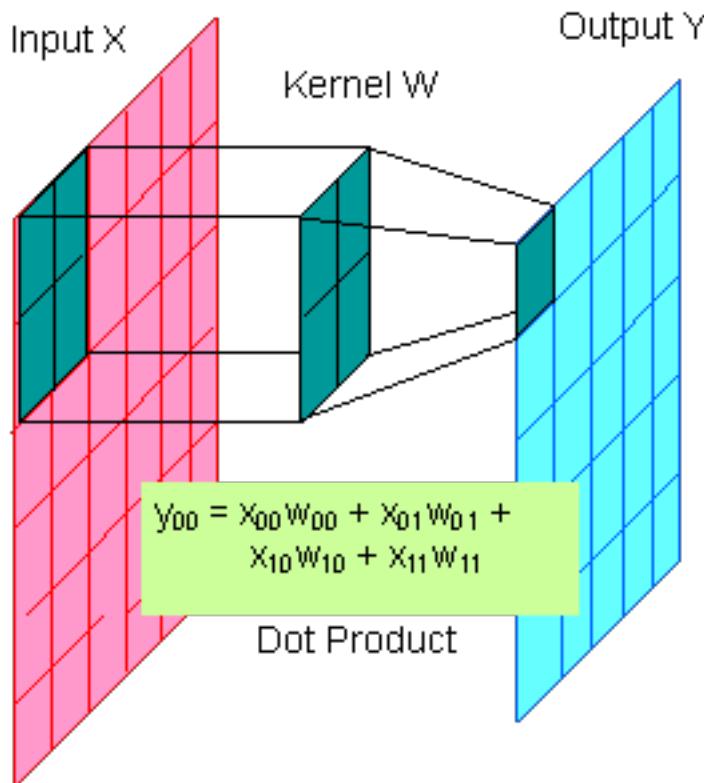
Discrete functions:

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m] g[n - m] = \sum_{m=-\infty}^{\infty} f[n - m] g[m]$$

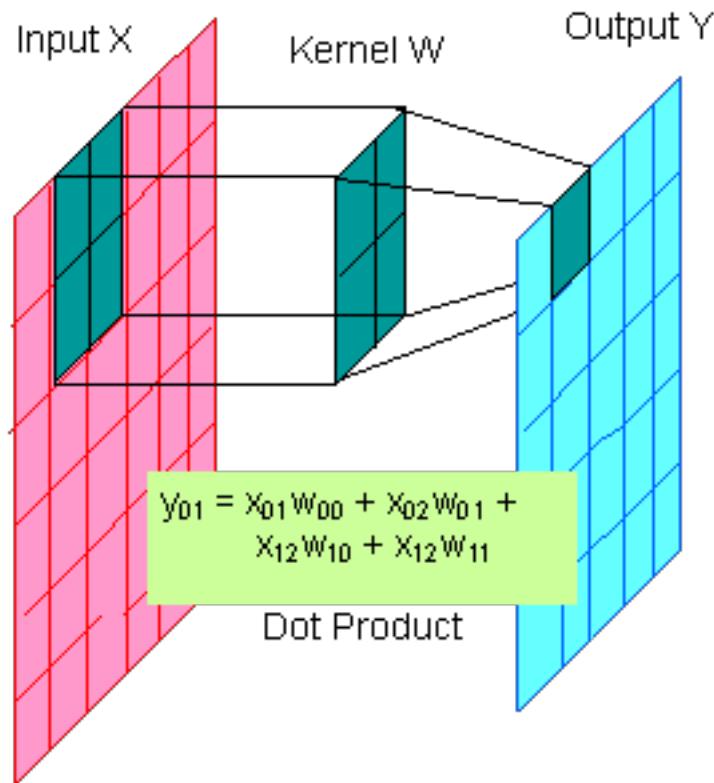
If discrete g has support on $\{-M, \dots, M\}$:

$$(f * g)[n] = \sum_{m=-M}^M f[n - m] g[m]$$

2-Dimensional Convolution



2-Dimensional Convolution



2-Dimensional Convolution

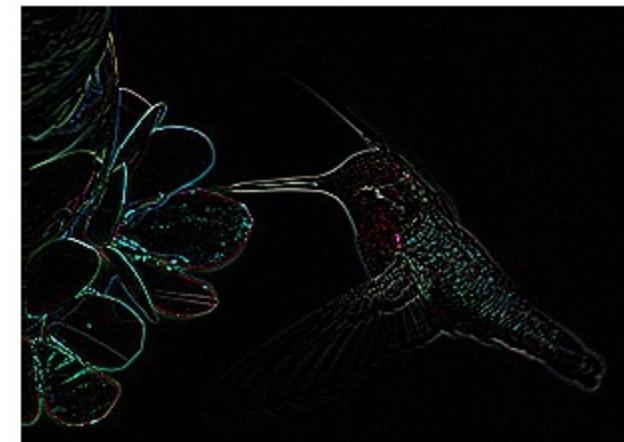
$$f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

<https://graphics.stanford.edu/courses/cs178/applets/convolution.html>

Original

Filter (=kernel)

0.00	0.00	0.00	0.00	0.00
0.00	0.00	-2.00	0.00	0.00
0.00	-2.00	8.00	-2.00	0.00
0.00	0.00	-2.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00



0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04
0.04	0.04	0.04	0.04	0.04

