

# Neural Networks

Aarti Singh

Machine Learning 10-315  
Feb 16, 2022

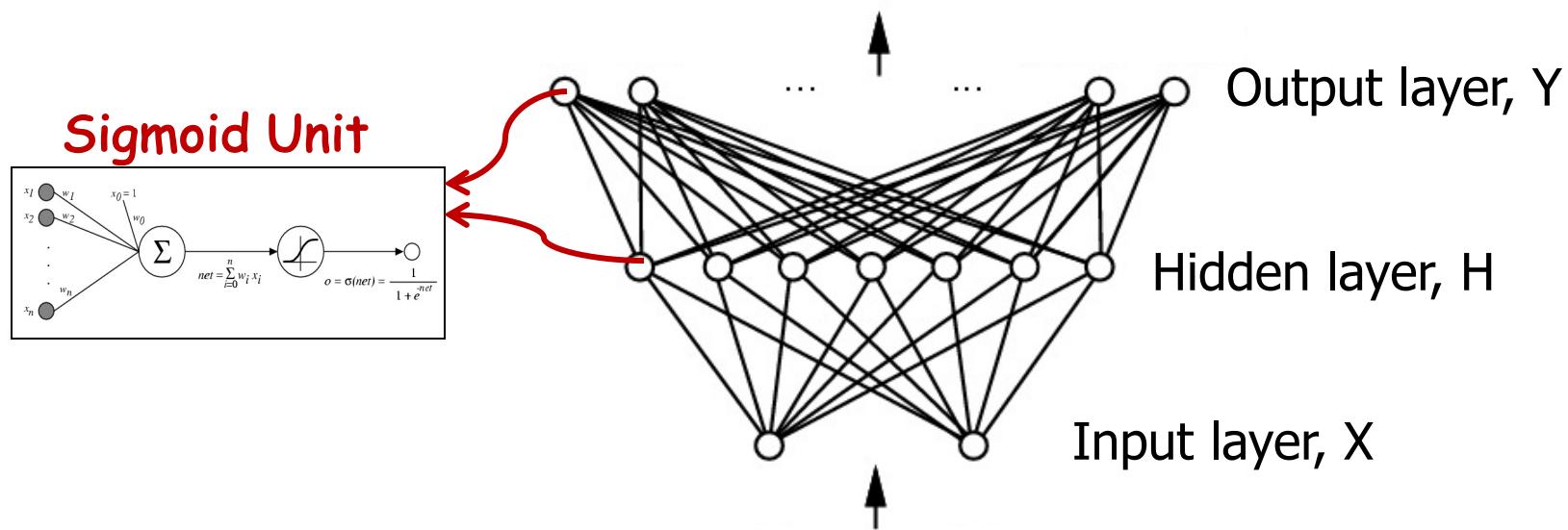


MACHINE LEARNING DEPARTMENT



# Neural Networks to learn $f: X \rightarrow Y$

- $f$  can be a **non-linear** function
- $X$  (vector of) continuous and/or discrete variables
- $Y$  (**vector** of) continuous and/or discrete variables
- Neural networks - Represent  $f$  by network of sigmoid (more recently ReLU – next lecture) units :



# Training Neural Networks – L2 loss

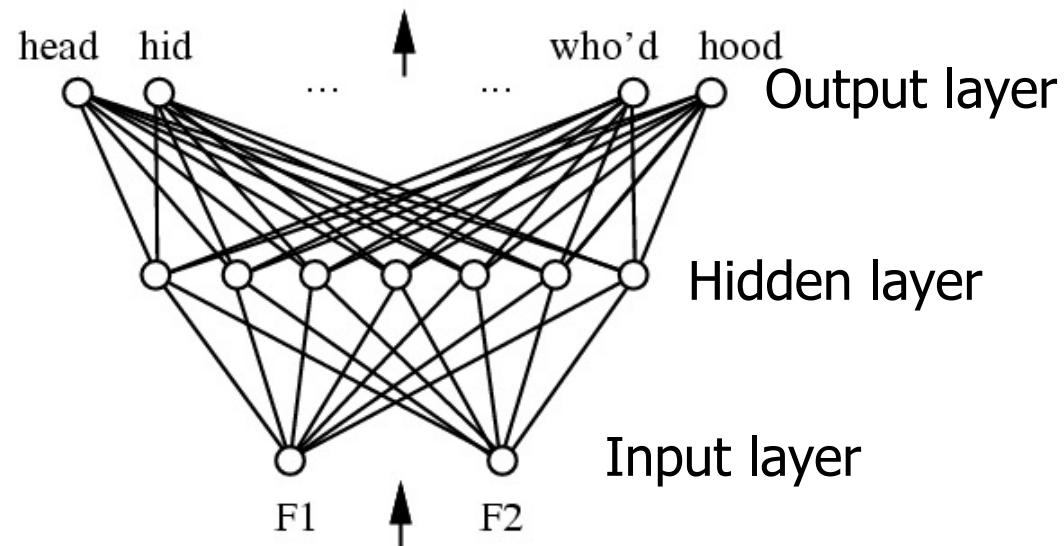
Train weights of all units to minimize sum of squared errors of predicted network outputs

$$W \leftarrow \arg \min_W \sum_l (y^l - \hat{f}(x^l))^2$$

$E[\mathcal{W}]$

Output of learned neural network

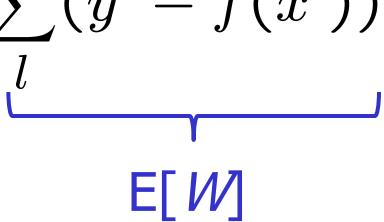
- Objective  $E[\mathcal{W}]$  is no longer convex in  $\mathcal{W}$ .
- Still use Gradient descent to minimize  $E[\mathcal{W}]$ .
- Training is slow with lot of data and lot of weights!



# Stochastic gradient descent

Stochastic gradient descent (SGD): Simplify computation by using a single data point at each iteration (instead of sum over all data points)

$$W \leftarrow \arg \min_W \sum_l (y^l - \hat{f}(x^l))^2$$



At each iteration of gradient descent

- Approximate  $E[W] \approx (y^l - \hat{f}(x^l))^2$
- Stochastic Gradient =

Cycle through all points, then restart OR choose random data point at each iteration

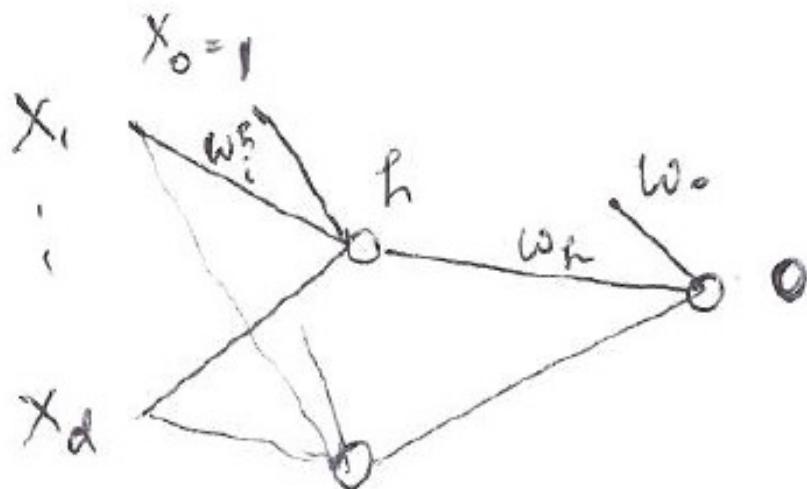
# Backpropagation

Backpropagation: Efficient implementation of (Stochastic) Gradient descent for Neural networks

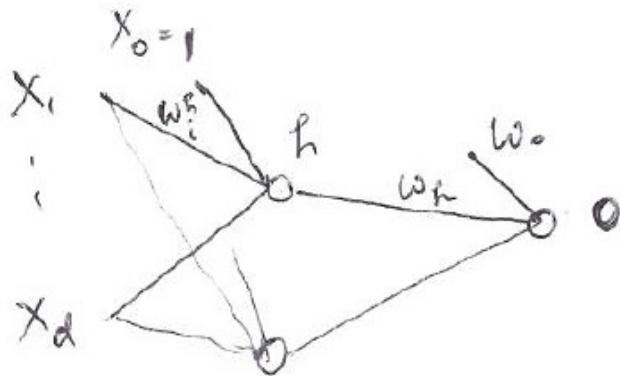
chain rule for gradients

+

layer-wise computation  
(going backward from output to input)



# Gradient Descent for 1 hidden layer 1 output NN



$$o = \sigma(w_o + \sum_h w_h o_h)$$

$$o_h = \sigma(w_h^T + \sum_i w_i^h x_i)$$

Gradient of the output with respect to one **final** layer weight  $w_h$

$$\frac{\partial o}{\partial w_h} = o(1 - o)o_h$$

# Backpropagation Algorithm using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do

1. Input the training example to the network  
and compute the network outputs

→ Using Forward propagation

- 2.

$$\delta \leftarrow o(1 - o)(y - o)$$

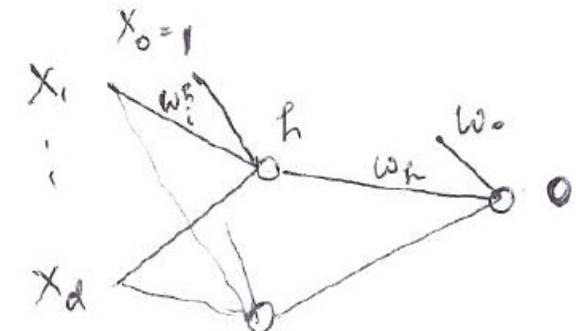
- 3.

4. Update each network weight  $w_h$

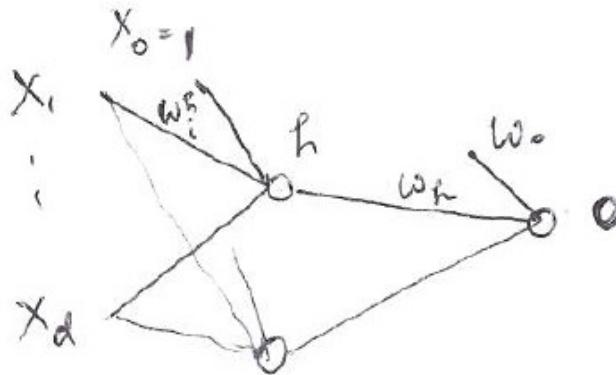
$$w_h \leftarrow w_h + \Delta w_h$$

where

$$\Delta w_h = \eta \delta o_h$$



# Gradient Descent for 1 hidden layer 1 output NN



$$o = \sigma(w_o + \sum_h w_h o_h)$$

$$o_h = \sigma(w_h^h + \sum_i w_i^h x_i)$$

Gradient of the output with respect to one **final** layer weight  $w_h$

$$\frac{\partial o}{\partial w_h} = o(1 - o)o_h$$

Gradient of the output with respect to one **hidden** layer weight  $w_i^h$

$$\frac{\partial o}{\partial w_i^h} = \frac{\partial o}{\partial o_h} \cdot \frac{\partial o_h}{\partial w_i^h} = o(1 - o)w_h \cdot o_h(1 - o_h)x_i$$

# Backpropagation Algorithm using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do

1. Input the training example to the network  
and compute the network outputs

→ Using Forward propagation

- 2.

$$\delta \leftarrow o(1 - o)(y - o)$$

3. For each hidden unit  $h$

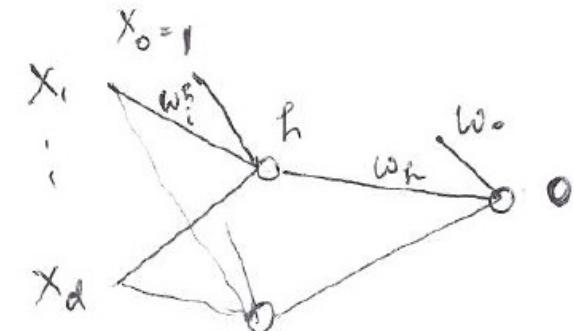
$$\delta_h \leftarrow o_h(1 - o_h)w_h\delta$$

4. Update each network weight  $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j o_i$$



$w_{ij}$  = wt from  $i$  to  $j$

Note: if  $i$  is input  
variable,  $o_i = x_i$

# Backpropagation Algorithm using Stochastic gradient descent

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do

1. Input the training example to the network  
and compute the network outputs



Using Forward propagation

2. For each output unit  $k$

$$\delta_k \leftarrow o_k(1 - o_k)(y_k - o_k)$$

3. For each hidden unit  $h$

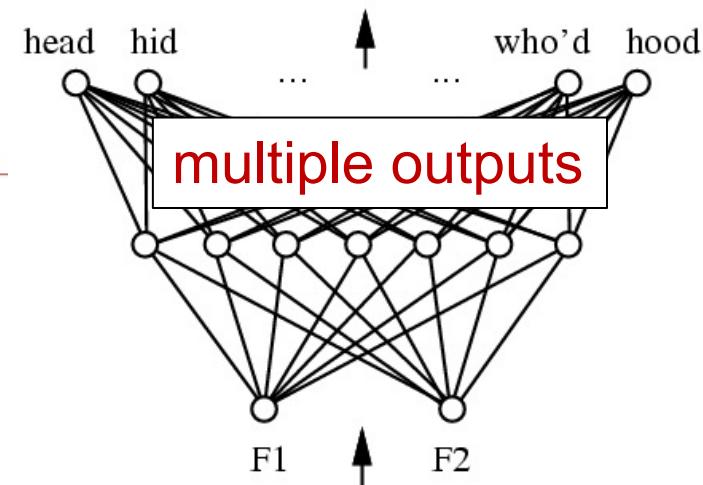
$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight  $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j o_i$$



$y_k$  = label of current  
training example for  
output unit  $k$

$o_k$  or  $o_h$  = unit output  
(obtained by forward  
propagation)

$w_{ij}$  = wt from  $i$  to  $j$

Note: if  $i$  is input variable,  
 $o_i = x_i$

# More on Backpropagation

---

- Gradient descent over entire *network* weight vector
- Will find a local, not necessarily global error minimum
  - In practice, often works well (can run multiple times)
- Minimizes error over *training* examples
  - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Objective/Error no longer convex in weights

# HW2

- Cross-entropy error metric for multi-class classification
  - $-\sum_k y_k \log \hat{y}_k$       loss for single data point

One-hot encoding – encode label as a vector  $[y_1, y_2, \dots y_K]$   
where  $y_k = 1$  if label is  $k$  and 0 otherwise

Interpret vector as probability distribution

# HW2

- Classification – cross-entropy error metric for multi-class classification

$$-\sum_k y_k \log \hat{y}_k$$

Entropy of a random variable X:

$$E_{X \sim p}[-\log p(X)] \quad \text{small } p(X) \Rightarrow \text{more information}$$

$-\log p(X)$  = number of bits needed to encode an outcome X when we know true distribution p

Cross-entropy = expected number of bits needed to encode a random draw of X when using distribution q

$$E_{X \sim p}[-\log q(X)] \quad \text{Minimized when } q=p$$

# HW2

- Classification – cross-entropy error metric for multi-class classification

$$-\sum_k y_k \log \hat{y}_k$$

Cross-entropy = expected number of bits needed to encode a random draw of  $X$  when using distribution  $q$

$$E_{X \sim p}[-\log q(X)]$$

Interpret one-hot-encoding  $y$  and  $\hat{y}$  as distributions.

# HW2

- Can implement backpropagation with matrix-vector products
  - uses matrix-vector calculus heavily

Caution: Denominator vs Numerator layout

[https://en.wikipedia.org/wiki/Matrix\\_calculus](https://en.wikipedia.org/wiki/Matrix_calculus)

# Poll

Which of the following classifiers are discriminative?

- A. Gaussian Naïve Bayes
- B. Logistic Regression
- C. Neural Networks

Which of these classifiers can exactly represent an XOR function?

# Deep Networks

Aarti Singh

Machine Learning 10-315  
Feb 16, 2022

Slides Courtesy: Barnabas Poczos, Ruslan Salakhutdinov, Joshua Bengio,  
Geoffrey Hinton, Yann LeCun, Pat Virtue

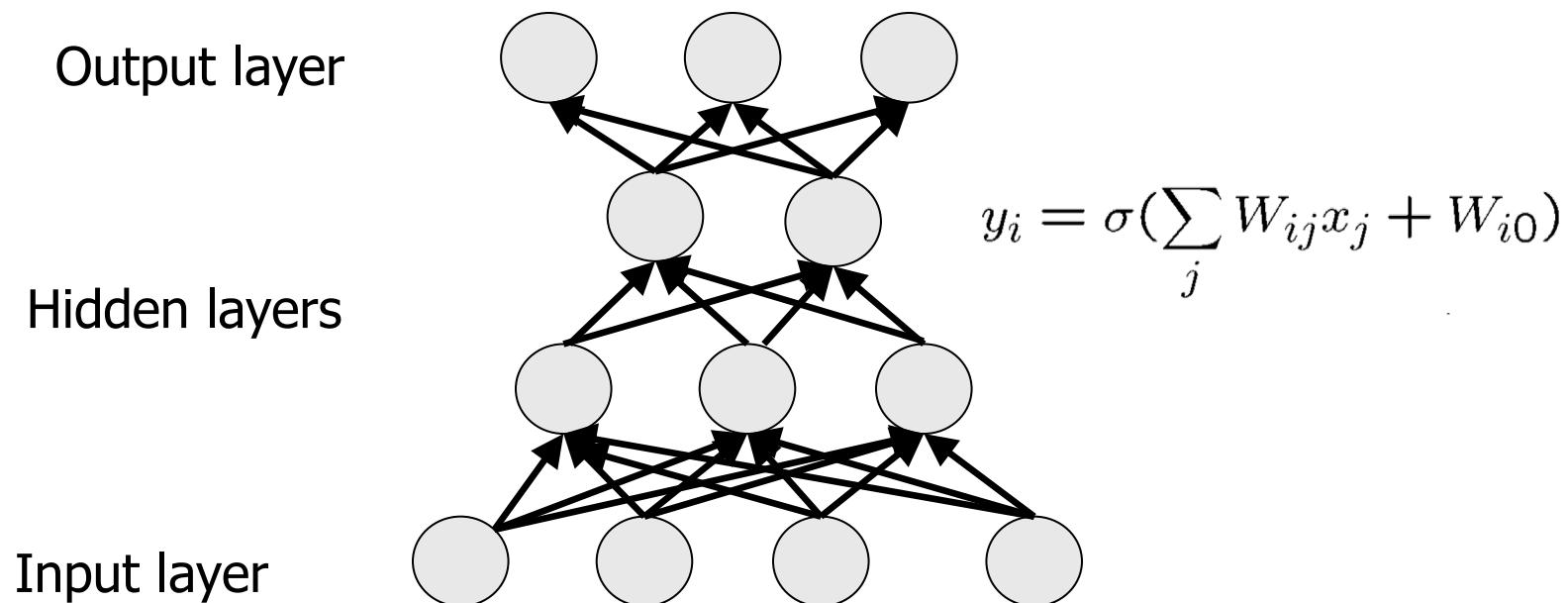


**MACHINE LEARNING DEPARTMENT**



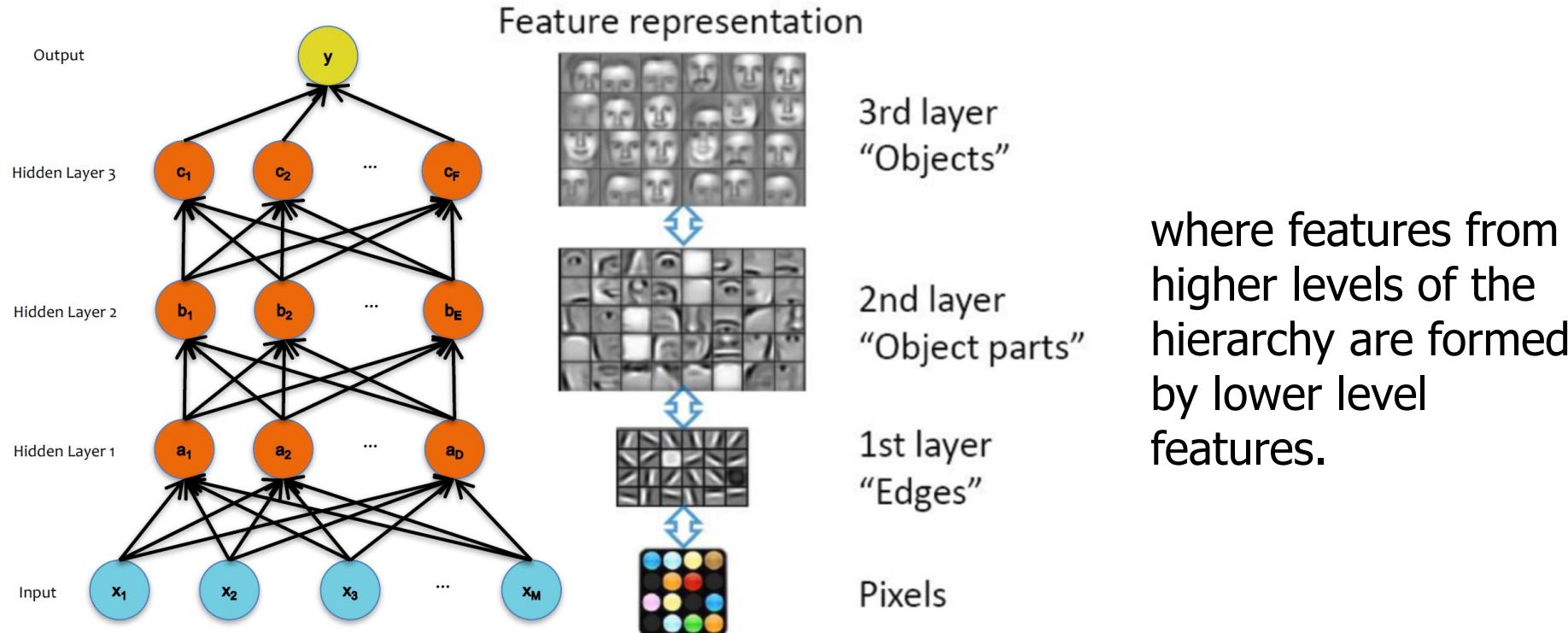
# Deep architectures

**Definition:** Deep architectures are composed of *multiple levels* of non-linear operations, such as neural nets with many hidden layers.



# Goal of Deep architectures

**Goal:** Deep learning methods aim at learning *feature hierarchies*



where features from higher levels of the hierarchy are formed by lower level features.

Example from Honglak Lee (NIPS 2010)

- Neurobiological motivation: The mammal brain is organized in a deep architecture (Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio, 2007) (E.g. visual system has 5 to 10 levels)

# Deep Learning History

- **Inspired** by the architectural depth of the brain, researchers wanted for decades to train deep multi-layer neural networks.
- **No** very **successful** attempts were reported before 2006 ...
  - Researchers reported positive experimental results with typically two or three levels (i.e. one or two hidden layers), but training deeper networks consistently yielded poorer results.
- **SVM**: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture.
- **Digression**: In the 1990's, many researchers abandoned neural networks with multiple adaptive hidden layers because SVMs worked better, and there was no successful attempts to train deep networks.
- **GPUs + Large datasets -> Breakthrough in 2006**

# Breakthrough

## **Deep Belief Networks (DBN)**

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).  
A fast learning algorithm for deep belief nets.  
Neural Computation, 18:1527-1554.

## **Autoencoders**

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).  
Greedy Layer-Wise Training of Deep Networks,  
Advances in Neural Information Processing Systems 19

## **Convolutional neural networks running on GPUs (2012)**

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, Advances in Neural Information Processing Systems 2012

# Deep Convolutional Networks

# Convolutional Neural Networks

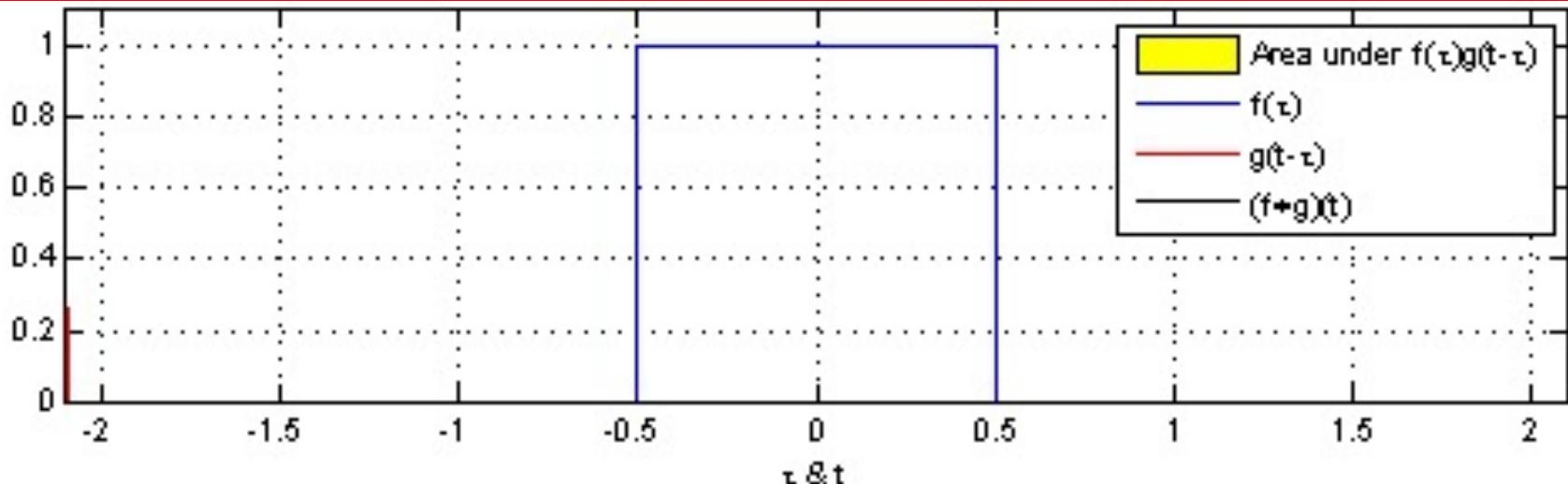
Compared to standard feedforward neural networks with similarly-sized layers,

- CNNs have much fewer connections and shared parameters
- and so they are easier to train,
- while their performance is likely to be only slightly worse, particularly for images as inputs.

## LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: **Gradient-Based Learning Applied to Document Recognition**, *Proceedings of the IEEE*, 86(11):2278-2324, November **1998**

# Convolution



**Continuous functions:**

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau = \int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau.$$

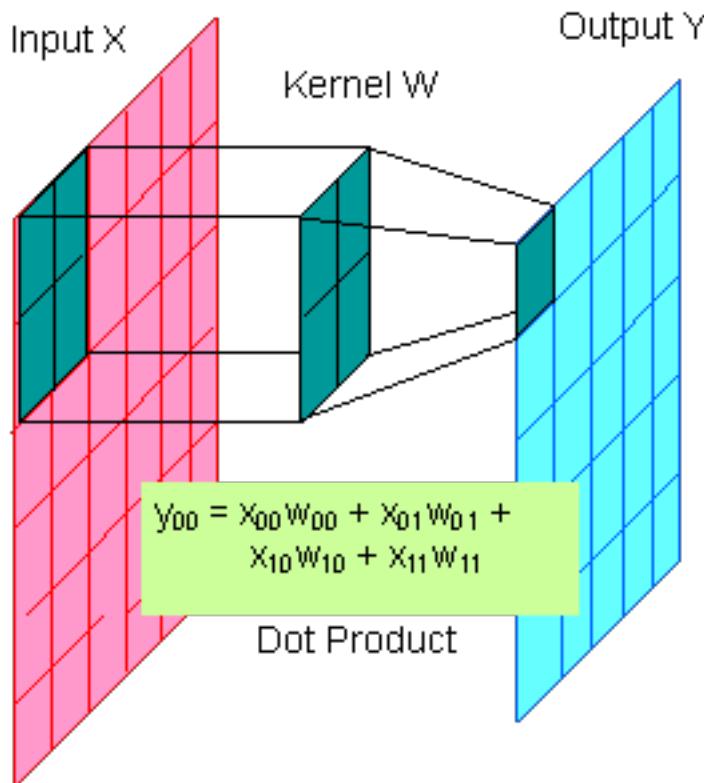
**Discrete functions:**

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m] g[n - m] = \sum_{m=-\infty}^{\infty} f[n - m] g[m]$$

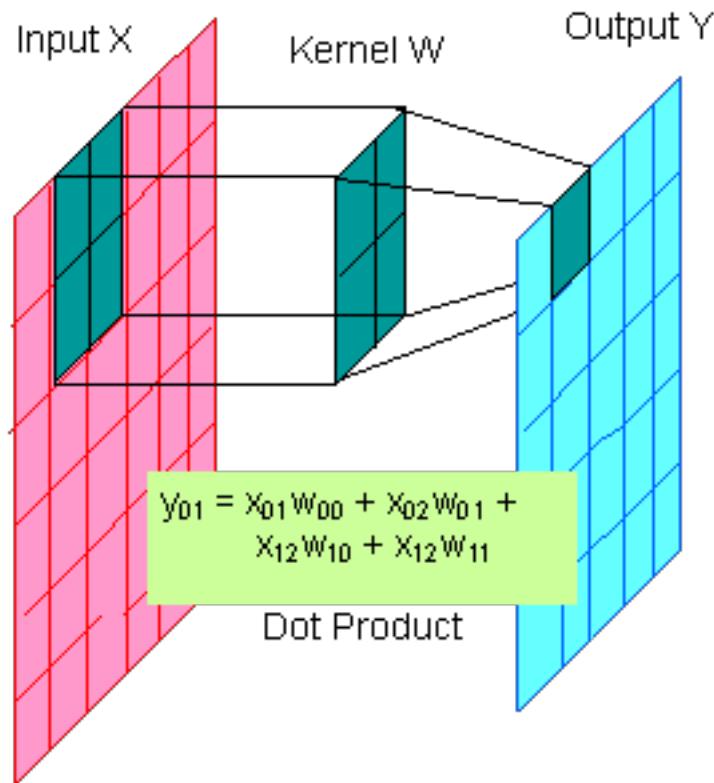
**If discrete g has support on  $\{-M, \dots, M\}$  :**

$$(f * g)[n] = \sum_{m=-M}^M f[n - m] g[m]$$

# 2-Dimensional Convolution



# 2-Dimensional Convolution



# 2-Dimensional Convolution

$$f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

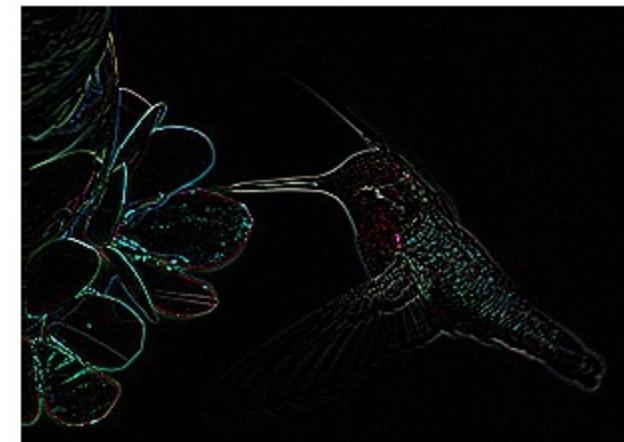
<https://graphics.stanford.edu/courses/cs178/applets/convolution.html>

Original



Filter (=kernel)

|      |       |       |       |      |
|------|-------|-------|-------|------|
| 0.00 | 0.00  | 0.00  | 0.00  | 0.00 |
| 0.00 | 0.00  | -2.00 | 0.00  | 0.00 |
| 0.00 | -2.00 | 8.00  | -2.00 | 0.00 |
| 0.00 | 0.00  | -2.00 | 0.00  | 0.00 |
| 0.00 | 0.00  | 0.00  | 0.00  | 0.00 |



|      |      |      |      |      |
|------|------|------|------|------|
| 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |

