Neural Networks

Aarti Singh

Machine Learning 10-315
Feb 16, 2022

ACHI

Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sigmoid (more

recently ReLU — next lecture) units :

Training Neural Networks — 12 loss

Train weights of all units to minimize sum of squared errors of
predicted network outputs

_ I 72 Output of learned
W «— arg mI/II/n zz:(y J;(CB)> neural network

\ J

ELW]

> Objective E[W] is no head hid A who'd hood
longer convex in W, 24 Output layer

> Still use Gradient descent
to minimize E[W].

» Training is slow with lot
of data and lot of \
weights! F1 * o

Stochastic gradient descent

Stochastic gradient descent (SGD): Simplify computation by using

a single data point at each iteration (instead of sum over all data
points)

W« argmin > (y' — f(z1))?
W

ELW]

At each iteration of gradient descent
 Approximate E[W]= (yl — f(:cl))Q

e Stochastic Gradient =

Cycle through all points, then restart OR choose random data
point at each iteration

Backpropagation

Backpropagation: Efficient implementation of (Stochastic)
Gradient descent for Neural networks

chain rule for gradients
+

layer-wise computation
(going backward from output to input)

Po “

X%

Gradient Descent for 1 hidden layer
1 output NN

o = s (wr Zwpo)
0 " ,
0, = (W + Zf,ofjx;>

L

Gradient of the output with respect to one final layer weight wy,

0o

Juwp o(1 — o)oy,

Backpropagation Algorithm
using Stochastic gradient descent

1 final output unit

Xy =y
Initialize all weights to small random numbers. Koo W ‘ -
Until satisfied, Do 4 s SR 0
e For each training example, Do S NN A
' & —— \ G
1. Input the training example to the network o
and compute the network outputs > Using Forward propagation
2.
0 o(l —o)(y—o)
3

4. Update each network weight w;,

w, < w, + Awy,
where

Aw, = ndoy

Gradient Descent for 1 hidden layer
1 output NN

o = & T ‘%wp\og

{

b s R
'f(CJC ‘T‘ Z’L’Jf'xL,}

L

Gradient of the output with respect to one final layer weight wy,

0o

Juwp o(1 — o)oy,

Gradient of the output with respect to one hidden layer weight w;"

do do dop
S = dor ot = o(1—o)wy, - op(1 — op)x;

1 l

Backpropagation Algorithm

1 final output unit

using Stochastic gradient descent

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

¥o =1
%

and compute the network outputs
2.

0 o(l —o)(y—o)
3. For each hidden unit h
Op < op(1 — op)wpd
4. Update each network weight w; ;
Wi €& Wi i AAaw;s
where

Awij = 19;0;

> Using Forward propagation

w; = wt from i to j

Note: if i is input
variable, o, = x;

Backpropagation Algorithm gl b whod hood
using Stochastic gradient descent '“

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs > Using Forward propagation

2. For each output unit % y, = label of current

o training example for
O = ox(1 — o) (y, — ox) output unit k
3. For each hidden unit h 0y Or 0, = unit output
Snon(l—on) ¥ whib (obtained by forward
k€outputs propagation)

4. Update each network weight w; ; Wi = wt from i to |
ij =

Wi j < Wi; + Aw;

where Note: if i is input variable,

O; = X;
Aw; j =nd;0;

More on Backpropagation

e Gradient descent over entire network weight
vector

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Objective/Error no
longer convex in
weights

HW2

» Cross-entropy error metric for multi-class classification

— 2 Vi log v loss for single data point

One-hot encoding — encode label as a vector [y, V5, .. Yl

where y, = 1 if label is k and O otherwise

Interpret vector as probability distribution

HW2

» Classification — cross-entropy error metric for multi-class
classification

— 2k Yk log Vi

Entropy of a random variable X:
Ey~,[-log p(X)] small p(X) => more information

-log p(X) = number of bits needed to encode an outcome X
when we know true distribution p

Cross-entropy = expected number of bits needed to encode a
random draw of X when using distribution g

Ex~pl-log a(X)] Minimized when g=p

HW2

» Classification — cross-entropy error metric for multi-class
classification

— 2k Yk log Vi

Cross-entropy = expected number of bits needed to encode a
random draw of X when using distribution g

Ex~o[-log a(X)]

Interpret one-hot-encoding y and ¥ as distributions.

HW2

» Can implement backpropagation with matrix-vector products
— uses matrix-vector calculus heavily

Caution: Denominator vs Numerator layout

https://en.wikipedia.org/wiki/Matrix_calculus

Poll

Which of the following classifiers are discriminative?
A. Gaussian Naive Bayes
B. Logistic Regression

C. Neural Networks

Which of these classifiers can exactly represent an XOR function?

Deep Networks

Aarti Singh

Machine Learning 10-315
Feb 16, 2022

Slides Courtesy: Barnabas Poczos, Ruslan Salakhutdinov, Joshua Bengio,
Geoffrey Hinton, Yann LeCun, Pat Virtue

ACHI

Deep architectures

Defintion: Deep architectures are composed of multip/e /evels of non-linear
operations, such as neural nets with many hidden layers.

Output layer

Hidden layers

Input layer

18

Goal of Deep architectures

Goal: Deep learning methods aim at learning feature hierarchies

Feature representation

Output

3rd layer
“Objects”

Hidden Layer 3

S — w_here features from

SSERCIE B ond layer higher levels of the

“Object parts” hierarchy are formed
by lower level

Hidden Layer 1 1St Iaye r featu res]
“Edges”

Hidden Layer 2

Pixels

Example from Honglak Lee (NIPS 2010)

A Neurobiological motivation: The mammal brain is organized in a deep
architecture (Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio, 2007)
(E.g. visual system has 5 to 10 levels) 19

Deep Learning History

d Inspired by the architectural depth of the brain, researchers wanted
for decades to train deep multi-layer neural networks.

A No very successful attempts were reported before 2006 ...

Researchers reported positive experimental results with typically
two or three levels (i.e. one or two hidden layers), but training
deeper networks consistently yielded poorer results.

d SVM: Vapnik and his co-workers developed the Support Vector
Machine (1993). It is a shallow architecture.

O Digression: In the 1990's, many researchers abandoned neural
networks with multiple adaptive hidden layers because SVMs worked
better, and there was no successful attempts to train deep networks.

O GPUs + Large datasets -> Breakthrough in 2006

20

Breakthrough

Deep Belief Networks (DBN)

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Autoencoders

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).
Greedy Layer-Wise Training of Deep Networks,
Advances in Neural Information Processing Systems 19

Convolutional neural networks running on GPUs (2012)
Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, Advances in Neural
Information Processing Systems 2012

21

Deep Convolutional Networks

22

Convolutional Neural Networks

Compared to standard feedforward neural networks with similarly-sized layers,
= CNNs have much fewer connections and shared parameters
= and so they are easier to train,

= while their performance is likely to be only slightly worse, particularly
for images as inputs.
LeNet 5
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning

Applied to Document Recognition, Proceedings of the IEEE,
86(11).2278-2324, November 1998

23

Convolution

| I | | I I I I I
1—-., E GEARRER R IR TEELS it :ma Ul'lder f(tbﬁ-t) .
1] B — S A, e unaeanoeBello. vony nzavnc, N B— f(x)
Y, | R T e A ey ne R e S R Pt e at-v)

: : . : (f+g)t)
04_. \ B A e e e o -
g.g_é D ettt T T N TR PN o

0 ! I l i I l I

-2 -1.5 1 0.5 0 0.5 1 1.5 2

t &t

Continuous functions:

(Fr®O = [f@gt—rydr—= [jt—r)g(r)ar

Discrete functions:

Fepinl= 3 flmlgln—ml= > fln—mlgim]

mMm——0c0

m——0o0

If discrete g has support 0?4 {-M,...M}:

(fxplnl= >,

m——

fln —m]g[m]
M

24

2-Dimensional Convolution

Input // Output Y
A Kernel W p
y
//
A a
ki
7] %
(] ki
/| %
// 4 // b
1] /’ Yoo = ¥opWop + Xp1Wpq +]
P HKipWip + Xqg Wy //
e L
A / Dot Product
A
y
y

25

2-Dimensional Convolution

Input X A Kernel w Output ¥
y
LA
//
//
//
¢ L/
// i
/|
¥ L4 / L~
L 11 W
L1 // Yo1 = ¥p1Wop + XpzWpq + k4
% K1z Wqp + Xyz2Wqy d |/
/] v
4 Dot Product
A
A
y
y

26

2-Dimensional Convolution
flx,yl* glx,y] = Z 2 fln,n,]-glx—n,y—n,]

nl = —Cc0 }‘12 = —00

https://graphics.stanford.edu/courses/cs178/applets/convolution.html

Filter (=kernel)

L. 0.00 0.00 0.00 0.00 0.00
Orlglnal 0.00 @ 0.00 -2.00 0.00 0.00

0.00 -2.00 8.00 -2.00 0.00

0.00 @ 0.00 -2.00 0.00 0.00

0.00 @ 0.00 A 0.00 0.00 0.00

0.04 0.04 0.04 0.04 0.04

0.04 @ 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.0¢4 0.04 0.04 0.04 0.04

