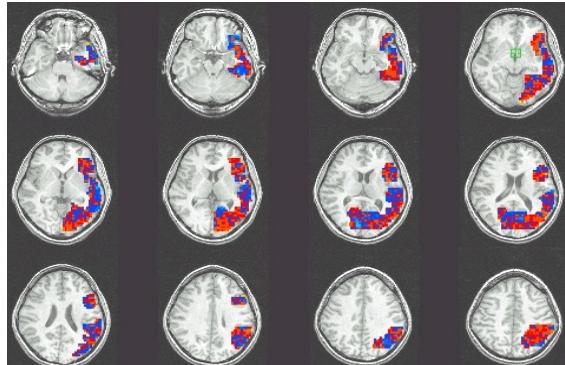


Announcements

- Recitation on Friday Jan 28 – Convexity review
- QnA1 due TODAY
- HW1 to be released TODAY

Recap – Bayes classifier



High Stress
Moderate Stress
Low Stress

(X, Y) - random variables with joint distribution P_{XY}

Input feature vector, X

Label, Y

If P_{XY} known, **Bayes classifier** – optimal for 0/1 loss

$$f(x) = \arg \max_{Y=y} P(Y = y | X = x)$$

$$= \arg \max_{Y=y} P(X = x | Y = y) P(Y = y)$$

Class conditional

Distribution of features

Class distribution

Recap – Gaussian Bayes classifier

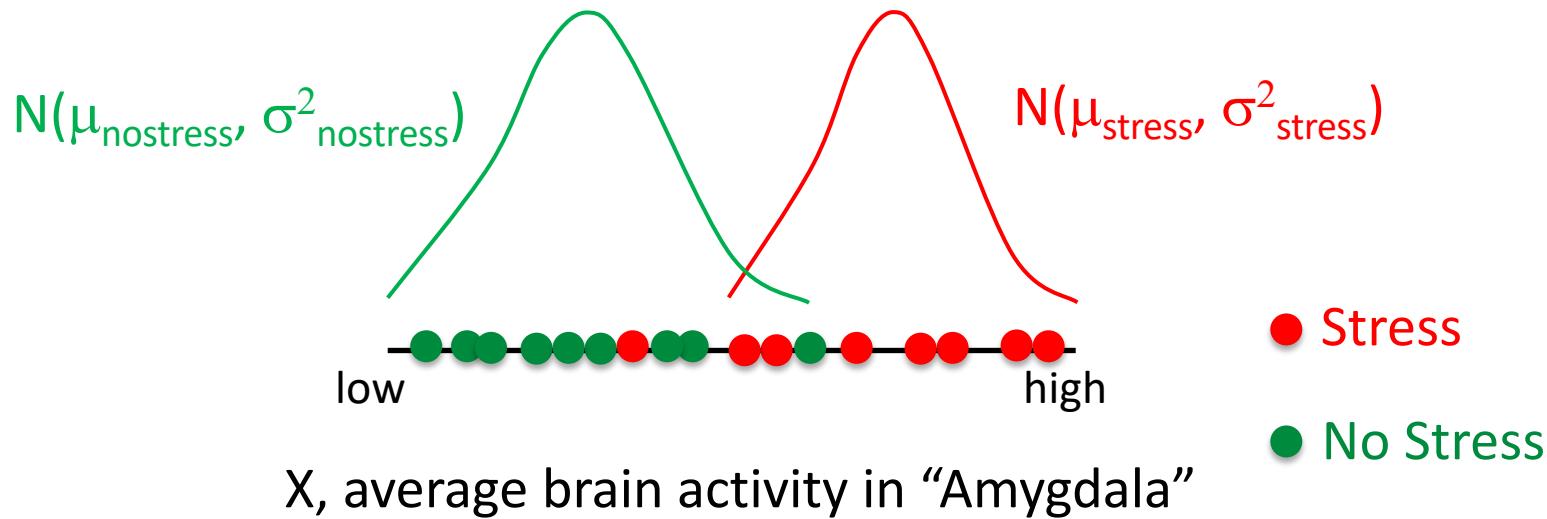
In practice P_{XY} unknown, use a distribution model to approximate

Gaussian Bayes classifier – assumes

Class distribution $P(Y)$ is Bernoulli(θ)

[Categorical if multiple classes]

Class conditional distribution of features $P(X|Y)$ is Gaussian



d-dim Gaussian Bayes classifier

$$f(x) = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

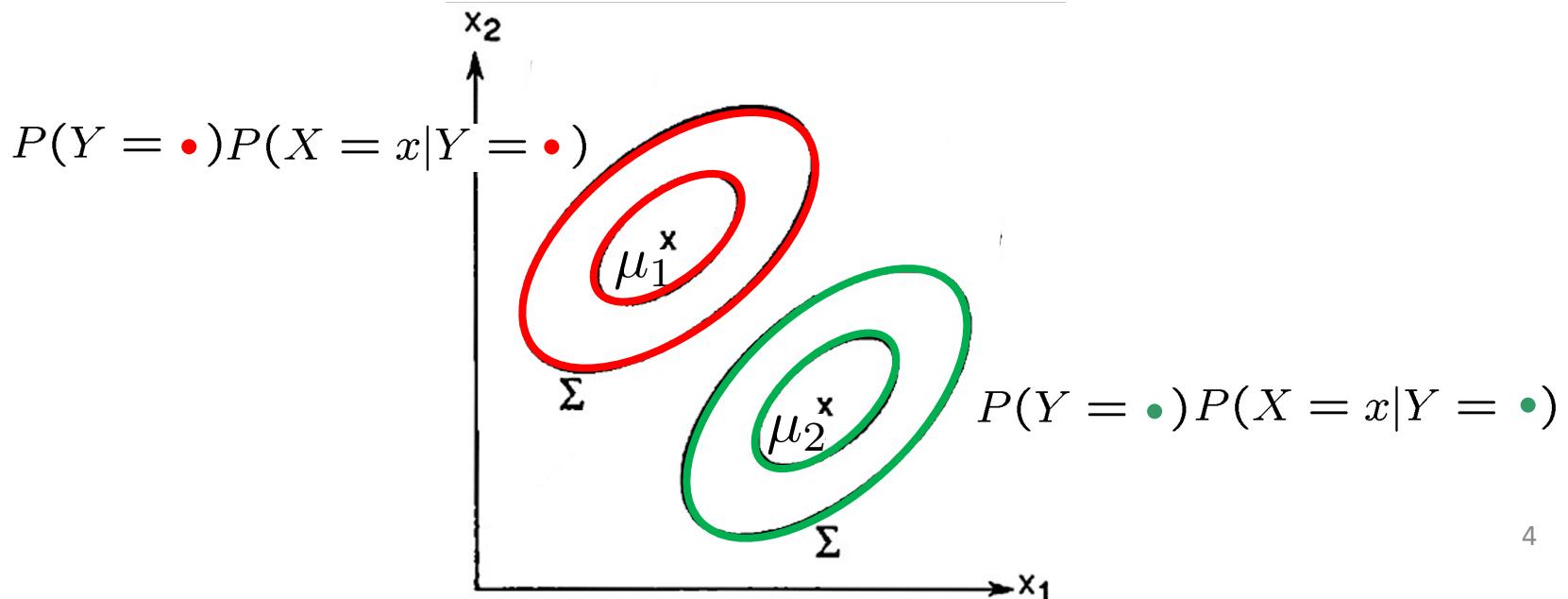
Learn parameters θ, μ_y, Σ_y from data

Class conditional
Distribution of inputs

Class distribution

Gaussian(μ_y, Σ_y)

Bernoulli(θ)



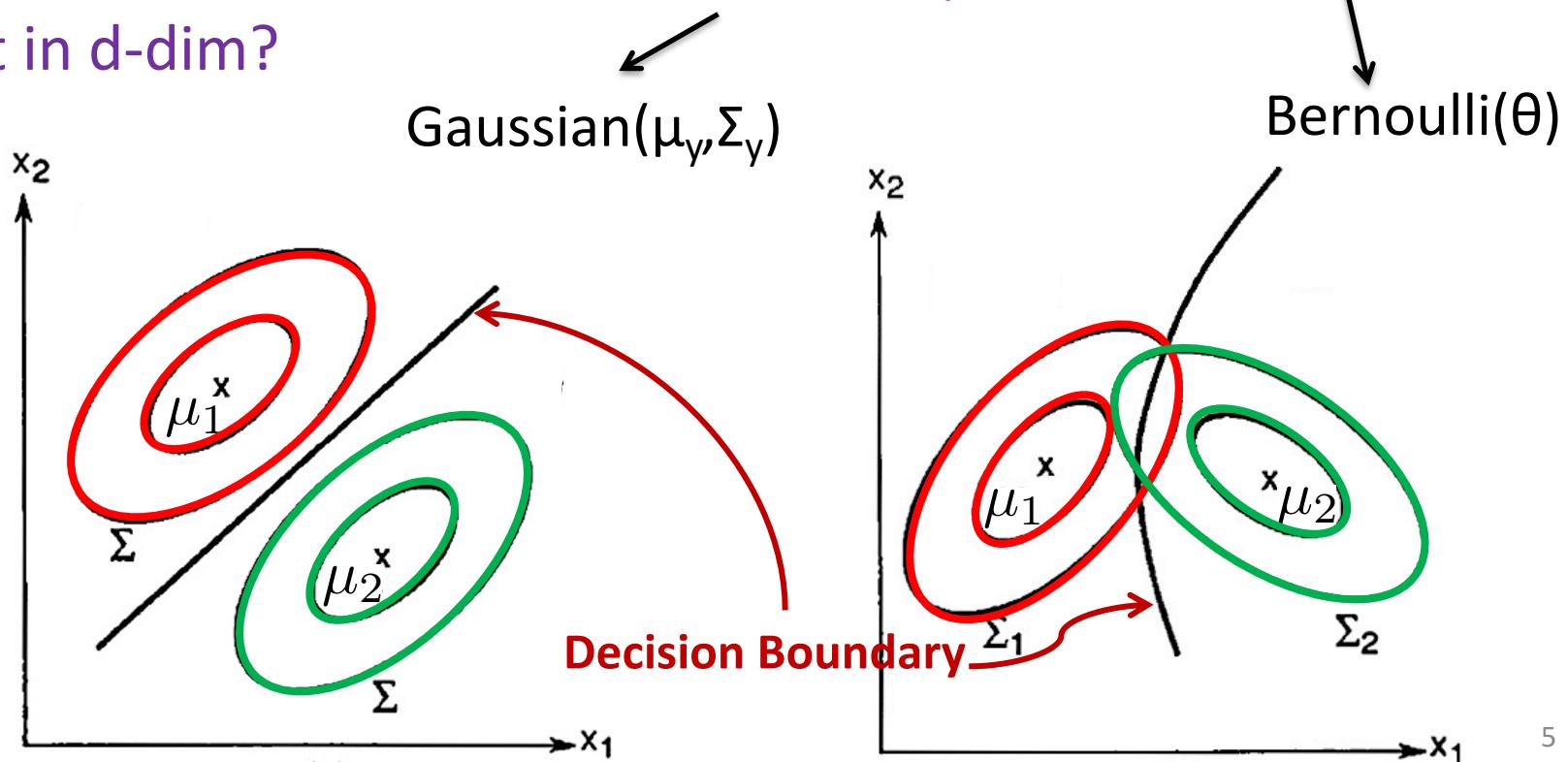
d-dim Gaussian Bayes classifier

$$f(X) = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

- What decision boundaries can we get in d-dim?

Class conditional
Distribution of inputs

Class distribution



Decision Boundary of Gaussian Bayes

- Decision boundary is set of points $x: P(Y=1|X=x) = P(Y=0|X=x)$

Compute the ratio

$$1 = \frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \frac{P(X=x|Y=1)P(Y=1)}{P(X=x|Y=0)P(Y=0)}$$

$$= \sqrt{\frac{|\Sigma_0|}{|\Sigma_1|}} \exp \left(-\frac{(x - \mu_1)^\top \Sigma_1^{-1} (x - \mu_1)}{2} + \frac{(x - \mu_0)^\top \Sigma_0^{-1} (x - \mu_0)}{2} \right) \frac{\theta}{1 - \theta}$$

In general, this implies a quadratic equation in x . But if $\Sigma_1 = \Sigma_0$, then quadratic part cancels out and decision boundary is linear.

d-dim Gaussian Bayes classifier

$$f(x) = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

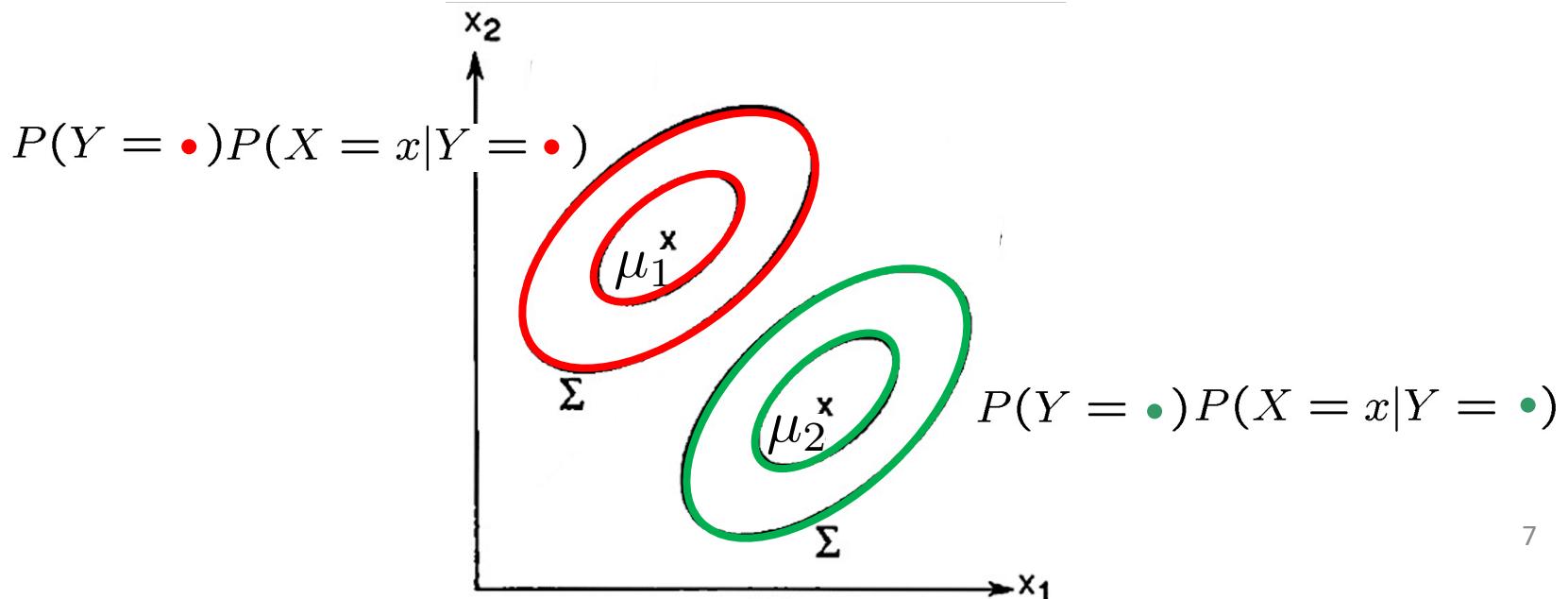
Learn parameters θ, μ_y, Σ_y from data

Class conditional
Distribution of inputs

Class distribution

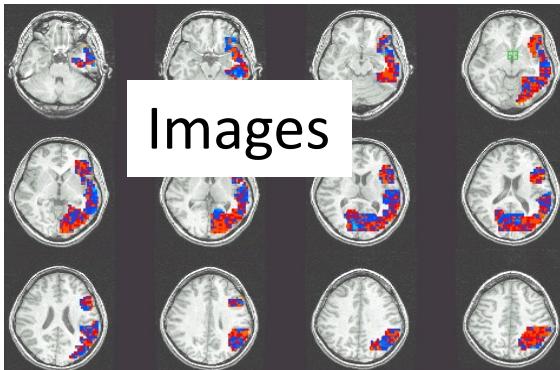
Gaussian(μ_y, Σ_y)

Bernoulli(θ)



Notion of “Features aka Attributes”

Input $X \in \mathcal{X}$



Input $X \in \mathcal{X}$

How to represent inputs mathematically?

- Image X = intensity/value at each pixel, fourier transform values, SIFT etc.
- Market information X = daily/monthly? price of share for past 10 years

Notion of “Features aka Attributes”

Input $X \in \mathcal{X}$

Document/Article

remember to wake up when class ends
=
wake ends to class remember up when

How to represent inputs mathematically?

- Document vector X ➤ Ideas?
 - list of words (different length for each document)
 - frequency of words (length of each document = size of vocabulary), also known as **Bag-of-words** approach ➤ Why might this be limited?
Misses out context!!
 - list of n-grams (n-tuples of words)

Text classification

Raw input → Features → Model for input features

word1	5	$P(X=x Y=y)$
word2	2	$= P(\text{word1} = 5, \text{word2} = 2,$
word3	10	$\text{word3} = 10, \dots Y=y)$
word4	20	
word5	12	
word6	5	
word7	8	
word8	4	
.	.	
.	.	
.	.	

HW1!

Glossary of Machine Learning

- Task
- Supervised learning
 - Classification
 - Regression
- Unsupervised learning
 - Learning distribution
 - Clustering
 - Dimensionality reduction/Embedding
- Input, X
- Label, Y
- Prediction, $f(X)$
- Experience = Training data
- Test data
- Overfitting
- Generalization
- Performance measure/loss – 0/1, squared
- iid
- Class conditional distribution of inputs
- Bayes rule
- Bayes Optimal classifier
- Decision boundary
- Feature/Attribute

Maximum Likelihood Estimation (MLE)

Aarti Singh

Machine Learning 10-315
Jan 26, 2022

MACHINE LEARNING DEPARTMENT



How to learn parameters from data?

MLE

(Discrete case)

Learning parameters in distributions

$$P(Y = \text{Red}) = \theta$$

$$P(Y = \text{Green}) = 1 - \theta$$

Learning θ is equivalent to learning probability of head in coin flip.

➤ How do you learn that?

Data =

Answer: 3/5

➤ Why??

Bernoulli distribution

Data, $D =$

- Parameter θ : $P(\text{Heads}) = \theta$, $P(\text{Tails}) = 1-\theta$
- Flips are **i.i.d.**:
 - **Independent** events
 - **Identically distributed** according to Bernoulli distribution

Choose θ that maximizes the probability of observed data
aka Likelihood

Maximum Likelihood Estimation (MLE)

Choose θ that maximizes the probability of observed data (aka likelihood)

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)$$

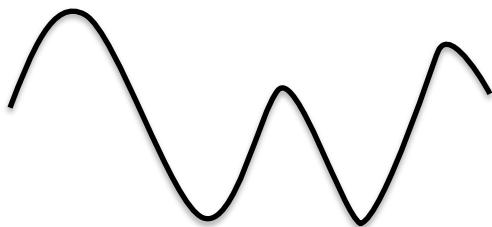
MLE of probability of head:

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = 3/5$$

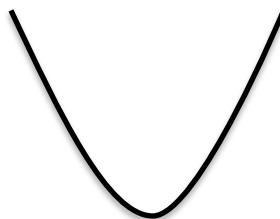
“Frequency of heads”

Short detour - Optimization

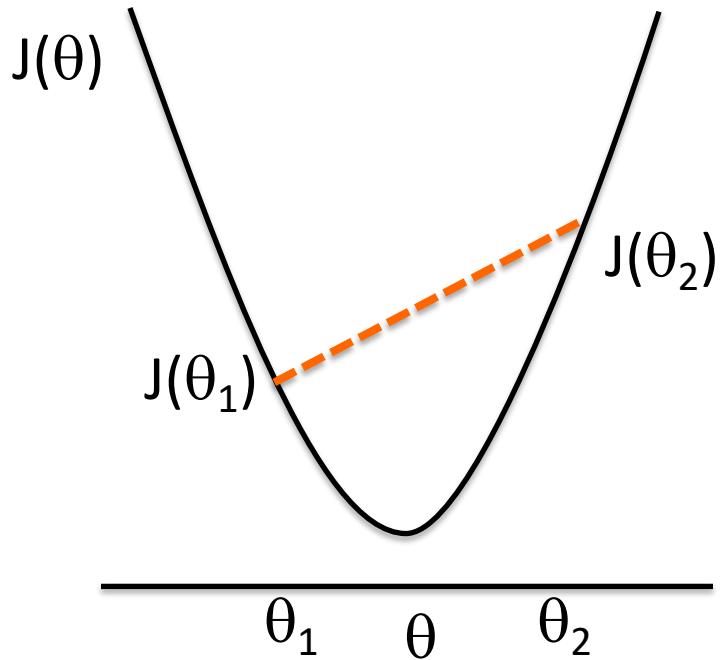
- Optimization objective $J(\theta)$
- Minimum value $J^* = \min_{\theta} J(\theta)$
- Minima (points at which minimum value is achieved) may not be unique



- If function is strictly convex, then minimum is unique

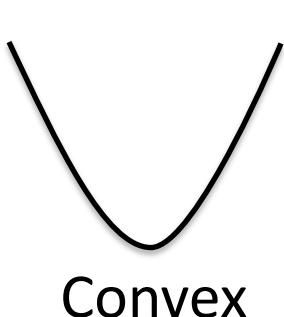


Convex functions

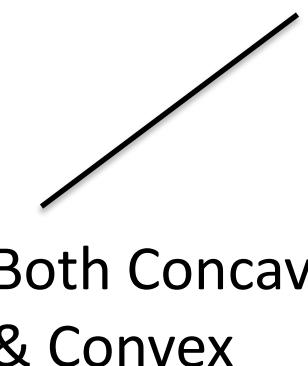


A function $J(\theta)$ is called **convex** if the line joining two points $J(\theta_1), J(\theta_2)$ on the function does not go below the function on the interval $[\theta_1, \theta_2]$

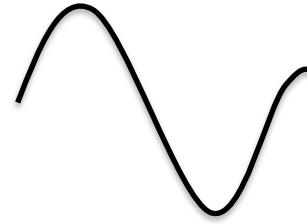
(Strictly) Convex functions have a unique minimum!



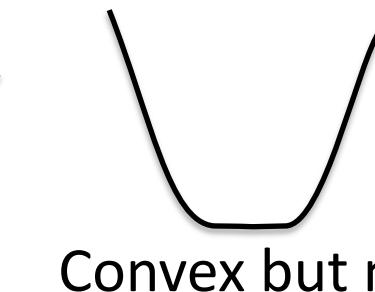
Convex



Both Concave & Convex



Neither



Convex but not strictly convex

Optimizing convex (concave) functions

- Derivative of a function
- Derivative is zero at minimum of a convex function
- Second derivative is positive at minimum of a convex function

Bernoulli MLE Derivation

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

Categorical distribution

Data, D = rolls of a dice

- $P(1) = p_1, P(2) = p_2, \dots, P(6) = p_6 \quad p_1 + \dots + p_6 = 1$
- Rolls are **i.i.d.:**
 - **Independent** events
 - **Identically distributed** according to Categorical(θ) distribution where
$$\theta = \{p_1, p_2, \dots, p_6\}$$

Choose θ that maximizes the probability of observed data
aka “Likelihood”

Maximum Likelihood Estimation (MLE)

Choose θ that maximizes the probability of observed data

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)$$

MLE of probability of rolls:

$$\hat{\theta}_{MLE} = \hat{p}_{1,MLE}, \dots, \hat{p}_{6,MLE}$$

$$\hat{p}_{y,MLE} = \frac{\alpha_y}{\sum_y \alpha_y}$$

α_y ← Rolls that turn up y
 $\sum_y \alpha_y$ ← Total number of rolls

“Frequency of roll y”

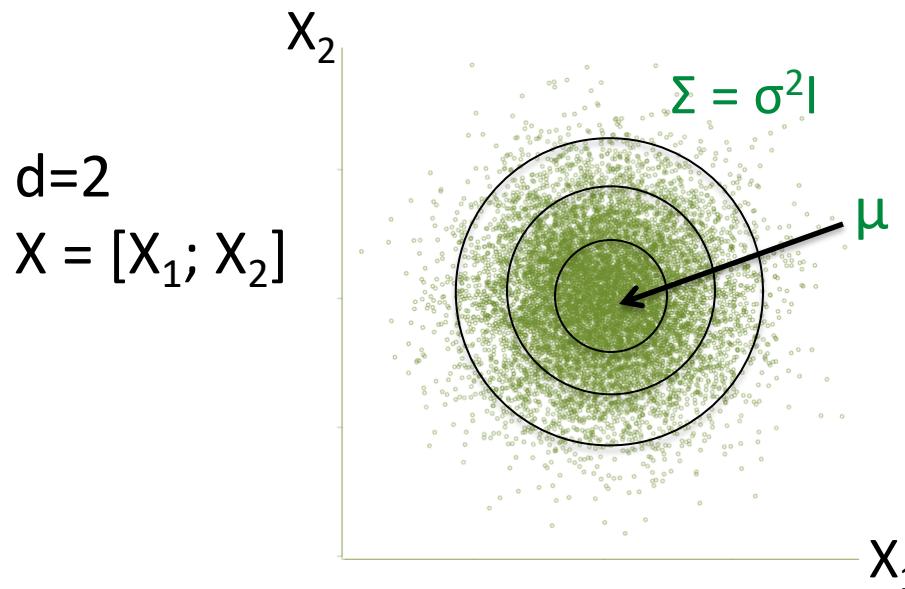
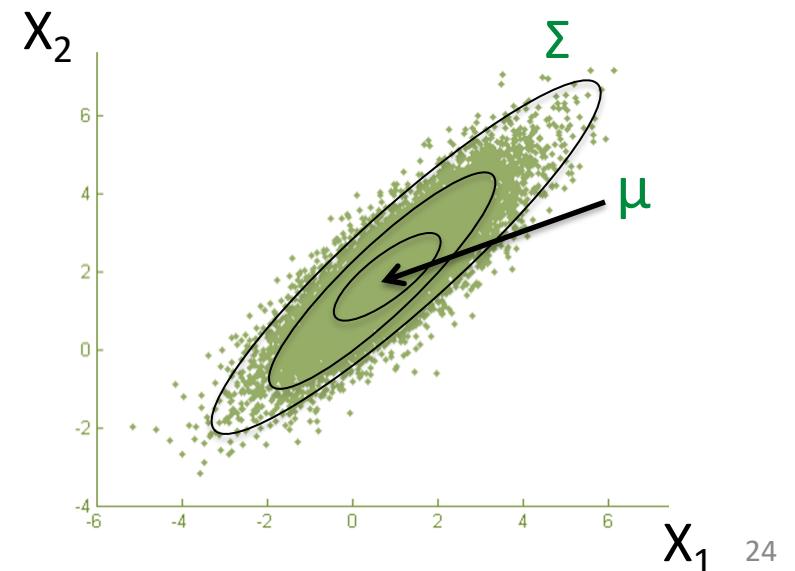
How to learn parameters from data? MLE (Continuous case)

d-dim Gaussian distribution

X is Gaussian $N(\mu, \Sigma)$

μ is d-dim vector, Σ is $d \times d$ dim matrix

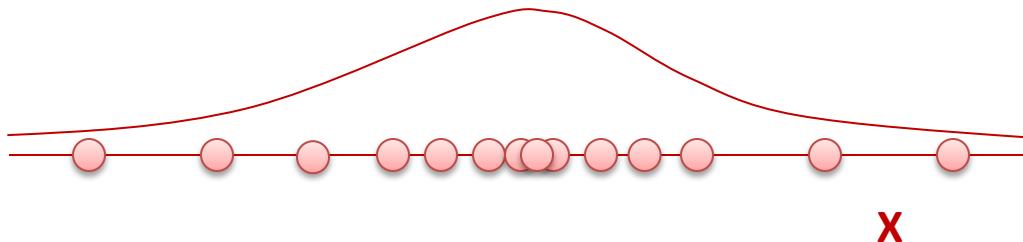
$$P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),$$



How to learn parameters from data? MLE (Continuous case)

Gaussian distribution

Data, $D =$



- Parameters: μ – mean, σ^2 - variance
- Data are **i.i.d.:**
 - **Independent** events
 - **Identically distributed** according to Gaussian distribution

Maximum Likelihood Estimation (MLE)

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^n P(X_i \mid \theta) \quad \text{Independent draws}\end{aligned}$$

Maximum Likelihood Estimation (MLE)

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D | \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^n P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2 / 2\sigma^2} \quad \text{Identically distributed}\end{aligned}$$

Maximum Likelihood Estimation (MLE)

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D | \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^n P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2 / 2\sigma^2} \quad \text{Identically distributed} \\ &= \arg \max_{\theta=(\mu,\sigma^2)} \underbrace{\frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^n (X_i - \mu)^2 / 2\sigma^2}}_{J(\theta)}\end{aligned}$$

MLE for Gaussian mean

➤ Poll

$$P(D | \theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^n (X_i - \mu)^2 / 2\sigma^2}$$

A. $\max_{\mu} \sum_{i=1}^n (X_i - \mu)^2$

B. $\min_{\mu} \sum_{i=1}^n (X_i - \mu)^2$

C. $\max_{\mu} \mu^2 - 2\mu \sum_{i=1}^n X_i$

D. $\max_{\mu} n\mu^2 - 2\mu \sum_{i=1}^n X_i$

MLE for Gaussian mean and variance

$$\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Self exercise:

Derive MLE of variance?

d-dimensional versions?

MLE for uniform or
exponential
distribution?

More coming up in HW1