Announcements

* Recitation on Friday Jan 28 — Convexity review
e QnAl due TODAY

e HW1 to be released TODAY



Recap — Bayes classifier

High Stress (X, Y) - random

Moderate Stress " bl ith ioint
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distribution Pyy

Input feature vector, X Label, Y

If P,y known, Bayes classifier — optimal for 0/1 loss

f(X)= arg lrpax P(Y =y|X ==x)
=Y

= argmax P(X =z|Y =y)P(Y = y)
=y
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Class conditional Class distribution
Distribution of features



Recap — Gaussian Bayes classifier

In practice P,y unknown, use a distribution model to approximate

Gaussian Bayes classifier — assumes
Class distribution P(Y) is Bernoulli(0)

[Categorical if multiple classes]
Class conditional distribution of features P(X]Y) is Gaussian
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X, average brain activity in “Amygdala”



d-dim Gaussian Bayes classifier

f(X)= arg }n;uax P(X =z|Y =y)P(Y = vy)

Learn parameters 6, y,,
2, from data
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d-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Y=y
\ J\ )
» What decision Class conditional Class distribution
boundaries can we  Distribution of inputs
get in d-dim? e \,
Gaussian(u,,Z,) Bernoulli(0)
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Decision Boun
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Decision Boundary of Gaussian Bayes

* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

T - —
_ @exp (= p)E (- ) +(fﬂ—uo)TEol(o:—uo) 0
’21’ 2 2 1—0

In general, this implies a quadratic equation in x. But if ;= %, then
guadratic part cancels out and decision boundary is linear. 6



d-dim Gaussian Bayes classifier

f(X)= arg }n;uax P(X =z|Y =y)P(Y = vy)

Learn parameters 6, y,,
2, from data
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Class conditional Class distribution
Distribution of inputs \
Gaussian(p,, Z,) Bernoulli(0)
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Notion of “Features aka Attributes”

Input X ¢ X

Market information

How to represent inputs mathematically?

* |Image X = intensity/value at each pixel, fourier transform
values, SIFT etc.

* Market information X = daily/monthly? price of share for past
10 years



Notion of “Features aka Attributes”

Input X ¢ X

remember to wake up when class ends

Document/Article =
wake ends to class remember up when

How to represent inputs mathematically?
« Document vector X > ldeas?
— list of words (different length for each document)

— frequency of words (length of each document = size of
vocabulary), also known as Bag-of-words approach 3 Why might

Misses out context!! this be
— list of n-grams (n-tuples of words) limited?
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Text classification

Raw input m) Features =) Model for input features

word1 5 P(X=x|Y=y)
e word2 2 = P(word1 =5, word2 = 2
- word3 10 ’ ’
Sk : worda 20 word3 =10, ...| Y=y)
ity words 1

word6 5

word7 8

word8 4

HW1!
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Glossary of Machine Learning

Task

Supervised learning

— Classification

— Regression
Unsupervised learning
— Learning distribution
— Clustering

— Dimensionality
reduction/Embedding

Input, X

Label, Y

Prediction, f(X)
Experience = Training data
Test data

Overfitting
Generalization
Performance
measure/loss — 0/1,
squared

iid

Class conditional
distribution of inputs
Bayes rule

Bayes Optimal classifier
Decision boundary
Feature/Attribute
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How to learn parameters from data?
MILE

(Discrete case)
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Learning parameters in distributions
P(Y =@)=6 P(Y =@)=1-6

Learning O is equivalent to learning probability of head in coin flip.

» How do you learn that?

Answer: 3/5

» Why??
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Bernoulli distribution

 Parameter 0 : P(Heads) =0, P(Tails) = 1-6

* Flips arei.i.d.:
— Independent events
— ldentically distributed according to Bernoulli distribution

Choose O that maximizes the probability of observed data
aka Likelihood
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Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data (aka
likelihood)

Ovirp = argm@ax P(D | 0)

MLE of probability of head:

apy
apg + ar

OviLE = =3/5

"Frequency of heads”
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Short detour - Optimization

Optimization objective J(0)
Minimum value J* = ming J(0)

Minima (points at which minimum value is achieved) may

not be unique

If function is strictly convex, then minimum is unique

AV |



Convex functions

J(6) A function J(0) is called convex if

the line joining two points
J(04),J(0,) on the function does
not go below the function on the
interval [0, 0,]

(Strictly) Convex functions
have a unique minimum!

9, 9 6
Both Concave Neither ~ Convex but not
& Convex strictly convex”




Optimizing convex (concave) functions

e Derivative of a function

 Derivative is zero at minimum of a convex function

e Second derivative is positive at minimum of a convex
function
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Bernoulli MLE Derivation

é\MLE = argm@ax P(D‘@)
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Categorical distribution

Data, D = rolls of a dice -~ s

* P(l) = pll P(Z) = p2) seey P(6) = p6 p1+""+p6 =1
 Rolls arei.i.d.:
— Independent events

— ldentically distributed according to Categorical(0) distribution
where

e — {pla p2a ser ) p6}

Choose O that maximizes the probability of observed data
aka “Likelihood”

21



Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data

Ovirp = argm@ax P(D | 0)

MLE of probability of rolls:
OrvireE = PULMLE,--->D6,MLE

Oy Rolls that turn up y

Py MLE —
Zy O‘y *— Total number of rolls

"Frequency of roll y* 22



How to learn parameters from data?
MILE

(Continuous case)
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d-dim Gaussian distribution

X is Gaussian N(, 2) W is d-dim vector, % is dxd dim matrix
P(X = x|p,X) = L exp (—l(x — )2 (x - u))
| Vv (2m)4[x] 2 |
X, X
3 =0 2
d=2 ” |
X = [Xy; X5




How to learn parameters from data?
MILE

(Continuous case)
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Gaussian distribution

/\

Data, D = O0—O0—10 Q00 O0LOOO0—0——0
X

* Parameters: p—mean, 6% - variance

 Dataarei.i.d.:
— Independent events

— ldentically distributed according to Gaussian distribution
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Maximum Likelihood Estimation (MLE)

Choose 0= (u,0%) that maximizes the probability of observed data
Oyrp = arg max B2

n
= arg meax H P(Xz. |9) Independent draws

1=1
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Maximum Likelihood Estimation (MLE)

Choose 0= (u,6%) that maximizes the probability of observed data
Oyvrp = arg Max BLLE g

n
= arg mgl,x H p(Xz. |9) Independent draws
§=1

Identically

Xi—n)?/20%
= w)"/20 distributed

= argmaxH\/i

202
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Maximum Likelihood Estimation (MLE)

Choose 0= (1,062%) that maximizes the probability of observed data
Ovrp = arg Max I @sdl’)

n
= arg mgx H P(Xi |9) Independent draws

=1
Iy denticall
1 —(X;—p)? /202 | Y
= arg ma.xH e~ (Xi=n)"/20 distributed
A Y 2w o2

1 — Y (Xi—p)?/20°
= arg max a6 T
& gz(u’az)(‘Qmﬂ) /2 |

7 (6)




MLE for Gaussian mean

> Poll 1 —S (X — )2 /252
P(D[6) = (27m2)n/2e 2i=1(Xi—p)"/
n n
A. mﬁtx Z(XZ — ,u)2 C. mgx;ﬂ — QMZXi
i=1 1=1
n
. o 2 n
B. mumizzl(Xz () D. ml?x nu? — QMZXz‘

1=1
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MVLE for Gaussian mean and variance

n
R 1
AMLE = — ) %
n .‘—
1=1
> g >
oviLe = — > (zi—n)
n .‘—
1=1
Self exercise:
Derive MLE of variance? MLE for uniform or
. . _ exponential
d-dimensional versions? distribution?

More coming up in HW1

31





