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Max A Posteriori (MAP) estimation

Can we bring in prior knowledge if data is not enough?

 Assume a prior (before seeing data D) distribution P(0) for

parameters 0

Before data

P(6)

50-50

/\ =

0

After data

P(6|D)

Orrap O

* Choose value that maximizes a posterior distribution P(0|D) of

parameters® -

Orrap

arg m@ax P(0| D)

arg mgax P(D|0)P(0)
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How to choose prior distribution?
* P(6)

— Prior knowledge about domain e.g. unbiased coin P(0) = 1/2

— A mathematically convenient form e.g. “conjugate” prior
If P(O) is conjugate prior for P(D|0),
then Posterior has same form as prior

Posterior = Likelihood x Prior
P(O|D) = P(D|O) x P(0)

e.g. Beta Bernoulli Beta 0 = bias of coin

Gaussian  Gaussian Gaussian 0 =mean
(known X)

inv-Wishart Gaussian inv-Wishart 0 = cov matrix X
(known u) =



MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)
MAP estimate of probability of head (using Beta conjugate prior):
P(9) ~ Beta(By, Br)

12



Beta distribution

Beta(Bg, Br)
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)

MAP estimate of probability of head (using Beta conjugate prior):

P(0) ~ Beta(By, B1) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(By + oy, BT + ar)
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Beta conjugate prior

P(0) ~ Beta(Bg, Br) P(0|D) ~ Beta(fy + apy, fr + ar)
Beta(2,2) Beta(2,3) Beta(20,30)
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)

MAP estimate of probability of head:

P(0) ~ Beta(By, B1) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(By + oy, BT + ar)

ag+ 0y —1 Mode of Beta

Equivalent to adding extra coin flips (B, - 1 heads, B - 1 tails)

As we get more data, effect of prior is “washed out”
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MAP estimation for Gaussian r.v.

Parameters 0 = (u,0?)

 Mean u (known 0?):

_ _ 1 —(u—n)?
Gaussian prior P(u) =N(n,A?2) = e 22
AV 27
1l —n Ui n
Avap = T ———g—=  AMLE = )
52 1T )2 1=1

As we get more data, effect of prior is “washed out”

* Variance o (known p): inv-Wishart Distribution
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MLE vs. MAP

e Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

HMLE arg maxP(D|9)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Orjap = arg mgx P(6|D)
= arg mgax P(DI|0)P(0)
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Poll

> When is MAP same as MLE?

A. When posterior is same as prior
B. When prior is uniform
C. When prior is zero for all values except one value of 0





