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Neural Networks to learnf: X 2 Y

* fcan be a non-linear function

» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

=

* Neural networks - Represent f by network of sigmoid (more

recently ReLU — next lecture) units :
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Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)
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Two layers of logistic units Highly non-linear decision surface



Neural Network
trained to drive a

car!
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Connectionist Models

. Lyouns
Consider humans:
—

e Neuron switching time ~ .001 second 2=

e Number of neurons ~ 101

e Connections per neuron ~ 10*=° «

e Scene recognition time ~ .1 second ~z-
S

e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):

e Many neuron-like threshold switching units

e Many weighted interconnections among units
-

e Highly parallel, distributed process




Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

[Cybenko 1988]. -
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1 hidden layer NN demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —
Start from input layere~
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wo+ Z W;T;)
)

1-Hidden layer, o(x) = ol|lwg+ Y. wha(wg +3 w?%)
1 output NN: n ‘ r |
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Training Neural Networks -

W «— arg min E|W]
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Where f(xl)

Train weights of all units to minimize sum of squared errors of

predicted network outputs

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w
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= O(xl) , output of neural network for training point x
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Incremental (Stochastic) Gradient Descent
=

L dela

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w] Using all training data D

2.W — W — nVED[zU]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example | in D

1. Compute the gradient VE| [u]
2. W < W —nVE [u]
1

E|[@] = (y. - o))’
Incremental Gradient Descent can approximate 'X

Batch Gradient Descent arbitrarily closely if n
made small enough
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Training Neural Networks
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Training Neural Networks
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o(x) is the sigmoid function
1
l+e™®
Nice property: %f—) =o(x)(1 —o(x)) Differentiable

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation



Gradient descent for training NNs

Gradient descent via Chain rule for computing gradients
= Back-propagation algorithm for training NNs

Gradient of loss wgcoh respect to one weight w;
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Gradient Descent for 1 node
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Gradient Descent for 1 hidden layer
1 output NN
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Gradient Descent for 1 hidden layer

1 output NN
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Gradient of the output with respect to one hidden layer weight w;"
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Gradient Descent for 1 hidden layer
1 output NN
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Gradient of the output with respect to one hidden layer weight w;"
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Gradient Descent for 1 hidden layer
1 output NN
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Gradient of the output with respect to one hidden layer weight w;"
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Gradient Descent for 1 hidden layer

1 output NN
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