Neural Networks

Aarti Singh

Machine Learning 10-315
Feb 14, 2022

ACHI

. Logistic function as a Graph
)(- %’-ulfﬂ"" g et X

1
Output, o(x) = o(wg + wZ
P 0 Z 1 + exp(—(wo + >, wi X;))

Sigmoid Unit
d Ol i
ner = gbwi Xj . 0 =0C(ner)= l-net
— l+e

/

Neural Networks to learnf: X 2 Y

* fcan be a non-linear function

» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

=

* Neural networks - Represent f by network of sigmoid (more

recently ReLU — next lecture) units :

—

Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)

4000

a he:d
Output * hid -
v p / + hod -
head hid layer A who'd hood had”
’ e o hawéd
! . 2000 v heard
2 * = o heed
® — i ; < hud
F2 (Hz) » who'd
~ hood
1000
500

0 500 1000 1400

Two layers of logistic units Highly non-linear decision surface

Neural Network
trained to drive a

car!

S harp Straight Sharp
Left Ahead Right

30 Output
Units

30x32 Sensor
Input Retina

Weights to output units from one hidden unit
K

PEEEE
A

Weights of each pixel for one hidden unit

Connectionist Models

. Lyouns
Consider humans:
—

e Neuron switching time ~ .001 second 2=

e Number of neurons ~ 101

e Connections per neuron ~ 10*=° «

e Scene recognition time ~ .1 second ~z-
S

e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):

e Many neuron-like threshold switching units

e Many weighted interconnections among units
-

e Highly parallel, distributed process

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

[Cybenko 1988]. -

Expressive Capabilities of N

Te 0y °~,<;<-'5;'=o L
LRFWe = O
O\
(pﬁ
> Y A
?(\W X IS
L

1 hidden layer NN demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —
Start from input layere~
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wo+ Z W;T;)
)

1-Hidden layer, o(x) = ol|lwg+ Y. wha(wg +3 w?%)
1 output NN: n ‘ r |

\ Op,]

Training Neural Networks -

W «— arg min E|W]

L S
U W «— arg mm Z(y — f(2')?
“' m

Where f(xl)

Train weights of all units to minimize sum of squared errors of

predicted network outputs

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w

=

——

TN

= O(xl) , output of neural network for training point x

12 loss

= § ol (mdaww“%

Learned neural
network

uywt ayer

\y

/Gra,dient

P 4

Training rule:

W
4

OF OF OF
I pl = s &
V] [&wg’ ow; Ow,
AW = —nV B[]
a4 ———J
) W
i 2 ¢
A — — OF
2 nawi Z’/

Incremental (Stochastic) Gradient Descent
=

L dela

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w] Using all training data D

2.W — W — nVED[zU]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example | in D

1. Compute the gradient VE| [u]
2. W < W —nVE [u]
1

E|[@] = (y. - o))’
Incremental Gradient Descent can approximate 'X

Batch Gradient Descent arbitrarily closely if n
made small enough

e

TN

Training Neural Networks

W
cor (V2]
o)
@D
ner = Z W; X; - — L
=0 17t o0 = G(net) = —
l+e o e =
- o
o(x) is the sigmoid function
\
1
1+e " ’X
Nice property: %f—) = Differentiable
A. o(x)(1- (X)) ¥ C. - 5(x)
—
B. o(x) o(-x) D. o(x)?
———

Training Neural Networks

)0

=) w: x: |
ner gb“l"‘l o = G(net) =

-net
l+e

o(x) is the sigmoid function
1
l+e™®
Nice property: %f—) =o(x)(1 —o(x)) Differentiable

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

Gradient descent for training NNs

Gradient descent via Chain rule for computing gradients
= Back-propagation algorithm for training NNs

Gradient of loss wgcoh respect to one weight w;
n 90 a\l”\

— ¥ (y!'—o! | — ol ()

(v) Z(y o) S0,

ow; 8w, 2 leD

— -
g
g Lt a0,
B0 gty (S
: Q
Stochastic gradient: Co) ot
g\ L. 2.' (j (3(»’\)

Gradient Descent for 1 node

n

o

Sigmoid Unit

net = ,-§o“"i X 0 = G(net) = : -net
l+e
el Y
O
- AN
o€ 00 (<59) ek T
Vi > 0 _ o ol (1-o0)
=o0oll —o0)x;
Ow; Onet Ow; L At -
“_*\) Q Qv) O(‘ DB Xq,

Gradient descent step: U

00+ 2 ({0

Gradient Descent for 1 hidden layer
1 output NN

6—(b X (,Of\o{f>

Vh
7’6

o0 = 6T %"03,:0@

g s
0, = (W + ZWlx)

L

'

-
s { ?;L\"NQ

Gradient of the output with respect to one final layer weight wy,

do
8—u)h— 0<1 — O)?.h

Gradient Descent for 1 hidden layer

1 output NN

Vi

o = s lwr Zwpo)

)

£ il s

L

1o

O'ﬂx

—

'

Gradient of the output with respect to one hidden layer weight w;"

\
0o do Jdop 0f
R o, awh gy
ow;, Ony OW; ‘ V
3
Oh _ A. on(1-0p) C. o(1-0) X
ow}'
—— B. Oh(1'oh)xi D 0(1'0)

o)

s(Z L3Ot)

-
s { "{—“U‘J

Gradient Descent for 1 hidden layer
1 output NN

s % 6

Vi

o = s lwr Zwpo)
13 w e
O'ﬂx = '3’\(CJC ‘r‘ ZL")L{\ x(>

L

-
s { "{—“U‘J

'

Gradient of the output with respect to one hidden layer weight w;"

t o
do _ 20 o @‘M‘\z’/\ O
Owh aoh'awih f o
1 2

’ Zuog

do _ D(\,Q>UL A. o(1-0)x; C. o(1-0) wy,

aOh
L B. o(1-0)oy, D. o(1-0)

Gradient Descent for 1 hidden layer
1 output NN

‘ - b X (,o"O{&-

O = S ([%{(/C?\ORB = 6—(£ h)
_ , t . .

C:.‘;\ = 13“(Cdf + Z‘A:‘f\xt> 6’(-{d P\ 7’\\>

L

(A

Gradient of the output with respect to one hidden layer weight w;"

0o 9o 8

- 2, O’}l = 0(1 — 0)wy, - 05,(1 — 0,)x;
Owl dop ow;
[\ [) | L\ -)

do do dop,
awi}} B ooy awl_’} - 0(1 — O)Wh . Oh(l — oh)xl-r

Gradient Descent for 1 hidden layer

1 output NN
B = &Lt %“SRORB = 6‘(?’\ (1\31';(')&}
v | v £
C’L\ = "5(Cw‘f + Ztef,’ﬁ) & 5'(__{;LO‘\ 7‘\>

L

Gradient of the output with respect to one final layer weight wy,

0o
Juwp o(1 — 0)?_@

Gradient of the output with respect to one hidden layer weight w;"

do do dop
S = dor ot = o(1—o)wy, - op(1 — op)x;

,i l —N YV > —D

