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Logistic Regression

Disviminabire = Genenh"™
Assumes the following functional form for P(Y | X): | Qo
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Features can be discrete or continuous!




Training Logistic Regression

How to learn the parameters wy, Wy, ... W4? (d features)

Training Data  {(x),y()}n_, xO0) = (xW . xy
Maximum (Conditional) Likelihood Estimates .
u: (A

n . .
Wycre = argmax [[ P(vW | X0 w)

]:1 — -
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Discriminative philosophy — Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!
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Expressing Conditional log Likelihood
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Good news: [(w) is concave function of w ! QnA2

Bad news: no closed-form solution to maximize /(w)

Good news: can use iterative optimization methods (gradient ascent)



Gradient Ascent for M(C)LE
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Gradient Ascent for M(C)LE ...
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Gradient ascent rule for wy: /\
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Gradient Ascent for M(C)LE
Logistic Regression

Gradient ascent algorithm: iterate until change < ¢

J J
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Fori=1,...,d, (/*\7‘4_\_"'\"92,7(’— +  ~ <t lraXy

wi(t_H) < wz-(t)—l—an;Z[yj—P(Yj =1 | x7, w(t))]
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Predict what current weight
thinks label Y should be

repeat

* Gradient ascent is simplest of optimization approaches

— e.g. Stochastic gradient ascent, Momentum methods, Newton method,
- > - — ) — —_— 19
Conjugate gradient ascent, IRLS (see Bishop 4.3.3)



That’s M(C)LE. How about M(C)AP?

p(w|Y,X) x P(Y |X,w)p(w) A

* Define priors on w
am>

D
— mmon mption: Normal 1 =
gi"t on assumption: Berme. p(w) =[] e 22
S r|.u ion, zero mean, identity ; K\ 27
covariance

Zero-mean Gaussian prior
— “Pushes” parameters towards zero

= Z\D\'x\ Fie

1+ exp(—2)

Logistic ~
function 3 S
(or Sigmoid), o(z) = : '?o

O,

» What happens if we scale z by a large constant? 2 20




Wet TWHEL = O
\

Logistic ~
function 3 S
(or Sigmoid), o(z) =: @’

1 4 exp(—=z) g,

» Poll: What happens if we scale z (equivalently weights w) by a large
constant?

A) The logistic decision boundary shifts towards class 1
B) The logistic decision boundary remains same

C) The logistic classifier tries to separate the data perfectly
D) The logistic classifier allows more mixing of labels on each side of

decision boundar
V P ~ A(0,%)
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That’s M(C)LE. How about M(C)AP?
godeu™ i © Ukafsheed pris<
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* M(C)AP estimate ’
Zero-mean Gaussian priorm
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Still concave objective!

Penalizes large weights | ,,
e




M(C)AP — Gradient

e Gradient
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Same as before

Extra term Penalizes large weights

Penalization = Regularization
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M(C)LE vs. M(C)AP

e Maximum conditional likelihood estimate

n
e J | ~J
w* = arg maxIn LH1P(y | x ,w)]
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J

 Maximum conditional a posteriori estimate

n
* J | xJ
w" = arg maxIn [p(w) -Hl P(y) | x ,W)]
]:

1
An— J

’wi(t_l_l) — wi(t)—l—n {—wi(t) + Zaz‘,z[yj —P(Y =1| xJ, w(t)]

|

24




Logistic Regression for more than 2
ket classes

* Logistic regression in more general case, where Y &lyy,..., Y}

(W)~ K-1)

d
ex + > ¢ wi,; X;

1+ 31 exp(wjo + Ty wiX;

for k=K (normalization, so no weights for this class)
p———

K- 1
‘— Zﬁ\‘ﬂk‘pz P(Y =y |X) — —
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Predict f*(z) = arg max P(Y = y|X = x)
=y

e

————

Is the decision boundary still linear?




LK. (d#) =qd)

Comparison with Gaussian Naive Bayes

'D’\;mﬁa T e
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alve Bayes vs. Logistic
Regression

wuf'z;(ﬂi)({-— @

Set of Gaussian _
Naive Bayes parameters <:> Set of Logistic

(feature variance Regression parameters

independent of class label)

AE—

* Representation equivalence (both yield linear decision
boundaries)

— But only in a special case!!! (GNB with class-independent
variances)

— LR makes no assumptions about P(X|Y) in learning!!!

— Optimize different functions (MLE/MCLE) or
(MAP/MCAP)! Obtain different solutions
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Experimental Comparison egordaro)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features
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Gaussian Naive Bayes vs. Logistic
Regression

Both GNB and LR have similar number O(d) of parameters.

 GNB error converges faster with increasing number of samples as its
parameter estimates are not coupled,

however,

 GNB has higher large sample error if conditional independence
assumption DOES NOT hold.

GNB outperforms LR if conditional independence assumption holds.
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What you should know

LR is a linear classifier
LR optimized by maximizing conditional likelihood or
conditional posterior
— no closed-form solution
— concave ! global optimum with gradient ascent
Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR
— Solution differs because of objective (loss) function
In general, NB and LR make different assumptions
— NB: Features independent given class ! assumption on P(X]Y)
— LR: Functional form of P(Y|X), no assumption on P(X]Y)
Convergence rates

— GNB (usually) needs less data
— LR (usually) gets to better solutions in the limit
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