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Discriminative Classifiers clasefes
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Bayes Classifier: :
f*(z) = argmax P(Y = y|X = x) Z
Y=y

= argmax P(X =z|Y =y)P(Y =y)
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Why not learn P(Y | X) directly? Or better yet, why not learn the
decision boundary directly?

* Assume some functional form for P(Y|X) or for the
decision boundary

* Estimate parameters of functional form directly from
training data

Today we will see one such classifier — Logistic Regression



Logistic Regression

Not really regression

\naua

Assumes the following functional form for P(Y | X):
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Features can be discrete or continuous!



Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y | X):
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(Linear Decision Boundary)




Training Logistic Regression
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How to learn the parameters wy, w;, ... wy? (features)

Training Data)-{(x@, y()) @) X0 = (x@ . xOy
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Maximum Likelihood Estimates
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But there is a problem ...

Don’t have a model for P(X) or P(X|Y) — only for P(Y|X)
—



Training Logistic Regression

How to learn the parameters wy, Wy, ... W4? (d features)
Training Data  {(x),y()}n_, xO0) = (xW . xy

Maximum (Conditional) Likelihood Estimates
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Discriminative philosophy — Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!




Expressing Conditional log Likelihood
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Expressing Conditional log Likelihood

1
P<Y B 1|X7 ”IU) 1 —+ exp(—wo — Zz ’UJZXZ>
P(Y = 0|X, w) = !
o W)= 1+ exp(wo —+ Zz ’LUZX@)
I(w) = In HP(yj|Xj, W) B (X \Jd)
' 174

J

| d d
= 3 |y (wo+ X wiz]) — In(L + eap(uwo + 3 wiz)

J

Good news: [(w) is concave function of w ! QnA2



Expressing Conditional log Likelihood
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Good news: [(w) is concave function of w ! QnA2

Bad news: no closed-form solution to maximize /(w)

Good news: can use iterative optimization methods (gradient ascent)



Iteratively optimizing concave function

v
* Conditional likelihood for Logistic Regression is concave

« Maximum of a concave function can be reached by
.

Gradient Ascent Algorithm (Lo Yy
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Initialize: Pick w at random

Gradient:
l(w)
Vil(w) = [8l(w), L 8l(w)],
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Update rule: Learning rate, nN>0
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Effect of step-size n
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Large n => Fast convergence but larger residual error
Also possible oscillations

Small n => Slow convergence but small residual error
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