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• Recitation on Friday Jan 28 – Convexity review

• QnA1 due TODAY 

• HW1 to be released TODAY

Announcements



Recap – Bayes classifier
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High Stress
Moderate Stress
Low Stress

Input feature vector, X Label, Y

If PXY known, Bayes classifier – optimal for 0/1 loss

Class conditional 
Distribution of features

Class distribution

f(X) = 

(X, Y) - random 
variables with joint 
distribution PXY



Recap – Gaussian Bayes classifier
In practice PXY unknown, use a distribution model to approximate

Gaussian Bayes classifier – assumes
Class distribution P(Y) is Bernoulli(q) 

[Categorical if multiple classes]
Class conditional distribution of features P(X|Y) is Gaussian
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No Stress

Stress

X, average brain activity in “Amygdala”

low high

N(µstress, s2stress)N(µnostress, s2nostress)



µ1

µ2

d-dim Gaussian Bayes classifier
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Bernoulli(θ)Gaussian(μy, Sy)

Learn parameters θ, μy, 
Σy from data 

Class conditional 
Distribution of inputs

Class distribution

f(X) = 
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d-dim Gaussian Bayes classifier
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Bernoulli(θ)

Decision Boundary

µ1

µ1

µ2

µ2

Gaussian(μy,Σy)

Class conditional 
Distribution of inputs

Class distribution

f(X) = 

Ø What decision 
boundaries can we 
get in d-dim?
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• Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

Decision Boundary of Gaussian Bayes

P (Y = 1|X = x)

P (Y = 0|X = x)
=

P (X = x|Y = 1)P (Y = 1)

P (X = x|Y = 0)P (Y = 0)

=

s
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In general, this implies a quadratic equation in x. But if Σ1= Σ0, then 
quadratic part cancels out and decision boundary is linear.

1 = 

TT



µ1

µ2

d-dim Gaussian Bayes classifier
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Bernoulli(θ)Gaussian(μy, Sy)

Learn parameters θ, μy, 
Σy from data 

Class conditional 
Distribution of inputs

Class distribution

f(X) = 



How to represent inputs mathematically?
• Image X = intensity/value at each pixel, fourier transform 

values, SIFT etc. 
• Market information X = daily/monthly? price of share for past 

10 years

Notion of “Features aka Attributes”
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Input

Images Market information 

Input



Notion of “Features aka Attributes”

How to represent inputs mathematically?
• Document vector X 

– list of words (different length for each document)
– frequency of words (length of each document = size of 

vocabulary), also known as Bag-of-words approach
Misses out context!!

– list of n-grams (n-tuples of words)
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Input

Document/Article

Ø Ideas?

Ø Why might 
this be 
limited?



Notion of “Features aka Attributes”

How to represent inputs mathematically?
• Document vector X 

– list of words (different length for each document)
– frequency of words (length of each document = size of 

vocabulary), also known as Bag-of-words approach
Misses out context!!

– list of n-grams (n-tuples of words)
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Input

Document/Article
remember to wake up when class ends

=
wake ends to class remember up when

Ø Ideas?

Ø Why might 
this be 
limited?



Text classification

Raw input Features Model for input features
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word1           5
word2           2
word3 10
word4         20
word5 12
word6 5
word7           8
word8           4
. .
. .
. .

P(X=x|Y=y)
= P(word1 = 5, word2 = 2, 

word3 = 10, …|Y=y)

HW1!



Glossary of Machine Learning
• Task
• Supervised learning 

– Classification
– Regression

• Unsupervised learning 
– Learning distribution
– Clustering
– Dimensionality 

reduction/Embedding
• Input, X
• Label, Y
• Prediction, f(X)
• Experience = Training data
• Test data
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• Overfitting
• Generalization
• Performance 

measure/loss – 0/1, 
squared

• iid
• Class conditional 

distribution of inputs
• Bayes rule  
• Bayes Optimal classifier
• Decision boundary
• Feature/Attribute



Maximum Likelihood Estimation (MLE)

Aarti Singh

Machine Learning 10-315
Jan 26, 2022



How to learn parameters from data?
MLE

(Discrete case)
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Learning parameters in distributions
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= q = 1 - q

Learning θ is equivalent to learning probability of head in coin flip. 

Ø How do you learn that?

Data = 

Answer: 3/5

Ø Why??



Bernoulli distribution
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Data, D =

• Parameter q : P(Heads) = q,  P(Tails) = 1-q

• Flips are i.i.d.:
– Independent events
– Identically distributed according to Bernoulli distribution

Choose q that maximizes the probability of observed data
aka Likelihood



Maximum Likelihood Estimation (MLE)

Choose q that maximizes the probability of observed data (aka 
likelihood)

MLE of probability of head:

18

= 3/5

“Frequency of heads”



Short detour - Optimization

• Optimization objective J(q)
• Minimum value J* = minq J(q)
• Minima (points at which minimum value is achieved) may 

not be unique

• If function is strictly convex, then minimum is unique
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Convex functions

20

J(q)

q

A function J(q) is called convex if
the line joining two points
J(q1),J(q2) on the function does
not go below the function on the
interval [q1, q2]

q1 q2

J(q1)

J(q2)

(Strictly) Convex functions 
have a unique minimum!

Convex Both Concave 
& Convex

Neither Convex but not 
strictly convex



Optimizing convex (concave) functions

• Derivative of a function

• Derivative is zero at minimum of a convex function

• Second derivative is positive at minimum of a convex 
function
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