Announcements

* Recitation on Friday Jan 28 — Convexity review
e QnAl due TODAY

e HW1 to be released TODAY



Recap — Bayes classifier
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Recap — Gaussian Bayes classifier

In practice P,y unknown, use a distribution model to approximate

Gaussian Bayes classifier — assumes
Class distribution P_(___Y) is Bernoulli(09)

o/

[Categorical if multiple classes]
Class conditional distribution of features E_(_)S!l) is Gaussian
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’ Md-dlm Gaussian Bayes classifier

Fidy
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~. d-dim Gaussian Bayes classifier
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Decision Boundary of Gaussian Bayes .,
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* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0| X=x)
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In general, this implies a quadratic equation in x. But if ;= %, then
guadratic part cancels out and decision boundary is linear. 7



d-dim Gaussian Bayes classifier

d o
f(X)= argmax P(X =z|Y = y)P(Y = y)
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Notion of “Features aka Attributes”

S
Input X ¢ X

Market information

How to represent inputs mathematically?

* |Image X = intensity/value at each pixel, fourier transform
values, SIFT etc.

* Market information X = daily/monthly? price of share for past
10 years



Notion of “Features aka Attributes”

Input X ¢ X A= s q vowj,ularé

e
Document/Article A= ond «

How to represent inputs mathematically?
« Document vector X > ldeas?
— list of words (different length for each document)

— frequency of words (length of each document = size of
vocabulary), also known as Bag-of-words approach 3 Why might

Misses out context!! this be
— list of n-grams (n-tuples of words) limited?
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Notion of “Features aka Attributes”

Input X ¢ X

remember to wake up when class ends

Document/Article =
wake ends to class remember up when

How to represent inputs mathematically?
« Document vector X > ldeas?
— list of words (different length for each document)

— frequency of words (length of each document = size of
vocabulary), also known as Bag-of-words approach 3 Why might

Misses out context!! this be
— list of n-grams (n-tuples of words) limited?
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Raw input

AAAAA 28,2020

i‘hé Quarantine 'l'imé

Kids Connecting to their Community

_Diear WFuture Me

3rd Grade, Edgewood Campus School

Text classification

m)  Features

Ko

wordl
K~ word?2
X word3
word4
word5
word6
word7
word8

10
20
12

m) Model for input features

4
P(X=x|Y=y) - Y
= P(wordl1 =5, word2 = 2,
word3 =TO, ..|Y=y)

HW1!
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Glossary of Machine Learning

Task

Supervised learning

— Classification

— Regression
Unsupervised learning
— Learning distribution
— Clustering

— Dimensionality
reduction/Embedding

Input, X

Label, Y

Prediction, f(X)
Experience = Training data
Test data

Overfitting .
Generalization 7
Performance
measure/loss — 0/1,
squared

iid

Class conditional .
distribution of inputs
Bayes rule

Bayes Optimal classifier
Decision boundary -
Feature/Attribute -
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Maximum Likelihood Estimation (MLE)

Aarti Singh

Machine Learning 10-315
Jan 26, 2022

ACHI




How to learn parameters from data?
MILE

(Discrete case)
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Learning parameters in distributions

P(Y =@)=6 P(Y =@)=1-6
Head = Teul

Learning O is equivalent to learning probability of head in coin flip.

» How do you learn that?

Answer: 3/5

—

» Why??
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Bernoulli distribution

 Parameter 0 : P(Heads) =0, P(Tails) = 1-6

* Flipsarei.i.d.: &~
— Independent events
— Identically distributed according to Bernoulli distribution

Choose 0 that maximizes the probability of observed data

—— J-
aka Likelihood
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Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data (aka

likelihood) De{RTHRT--.]
Oyvrp = argmax P(D|6)
q‘ Tk ™
——
71D
MLE of probability of head:
VA
~ Q{H v~
OvLE = =3/5
Qg +7(34T

"Frequency of heads”
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Short detour - Optimization

Optimization objective J(0)
Minimum value J* = ming J(0)

Minima (points at which minimum value is achieved) may
not be unique

3®) T

&

If function is strictly convex, then minimum is unique

\/ /\ Sy
ConaV&



Convex functions

J(6) A function J(0) is called convex if

the line joining two points
J(04),J(0,) on the function does
not go below the function on the
interval [0, 0,]

(Strictly) Convex functions
have a unique minimum!

9, 9 6
Both Concave Neither ~ Convex but not
& Convex strictly convex”




Optimizing convex (concave) functions

 Derivative of a function 4 T(ered
A3 Qi TOTO- ) "
—a_ 2 gte

do ¢7° 0

 Derivative is zero at minimum of a convex function

/\

e Second derivative is positive at minimum of a convex
function
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