

Bayes classifier, Decision boundary

Aarti Singh

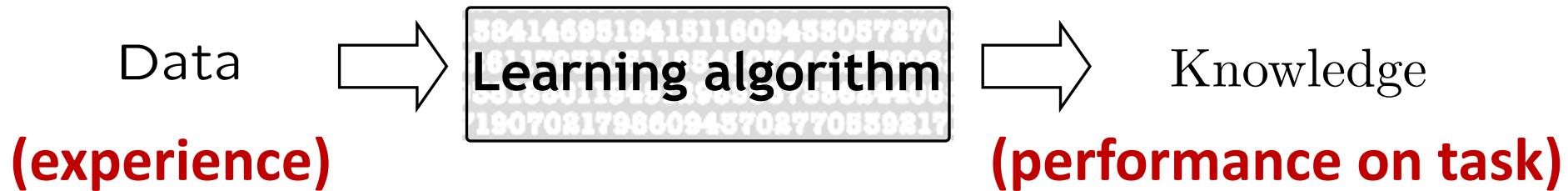
Machine Learning 10-315
Jan 24, 2022

MACHINE LEARNING DEPARTMENT

What is Machine Learning?

Design and Analysis of algorithms that

- improve their performance
- at some task
- with experience



Tasks

Broad categories -

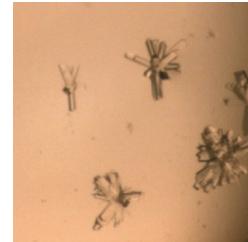
- **Supervised learning** $X \rightarrow Y$
Classification, Regression
- **Unsupervised learning** X
Density estimation, Clustering, Dimensionality reduction
- Graphical models
- Semi-supervised learning
- Active learning
- Bayesian optimization
- Reinforcement learning
- Many more ...

Experience

Training data

Crystal

Needle



Tree

Tree

Empty

Needle

Test data



?

A good ML algorithm

should: **generalize** aka perform well on test data

should not: **overfit** the training data

gap between test & training performance

Performance

For test data X , measure of closeness between label Y and prediction $f(X)$

$$f: X \rightarrow Y$$

Binary Classification $\text{loss}(Y, f(X)) = 1_{\{f(X) \neq Y\}}$ 0/1 loss

Regression $\text{loss}(Y, f(X)) = (f(X) - Y)^2$ squared loss
 $|f(X) - Y|$ abs loss

We will talk about more performance measures including for unsupervised learning later in course.

Training data $(x_i, y_i)_{i=1}^n$

$$\sum_{i=1}^n \mathbb{1}_{f(x_i) \neq y_i}$$

Poll

- A classifier with 100% accuracy on training data and 70% accuracy on test data is better than a classifier with 80% accuracy on training data and 80% accuracy on test data.
A. True B. False
- Which classifier is better, given following statistics on test accuracy?

	Mean	Best run	<u>Std</u>
Classifier A	92%	97%	15%
Classifier B	87%	100%	5%

Design of ML algorithms

Minimize loss in expectation (over random test data)

$$\min_f E_{XY}[\text{loss}(f(X), Y)]$$

\equiv $\text{loss}(f(X), Y)$

$(f(x) - Y)^2$
 $\frac{\partial}{\partial f}$

- Different methods use
 - different loss, e.g. 0/1 loss, squared loss, etc.
 - different model f , e.g. linear, neural network, decision tree etc.

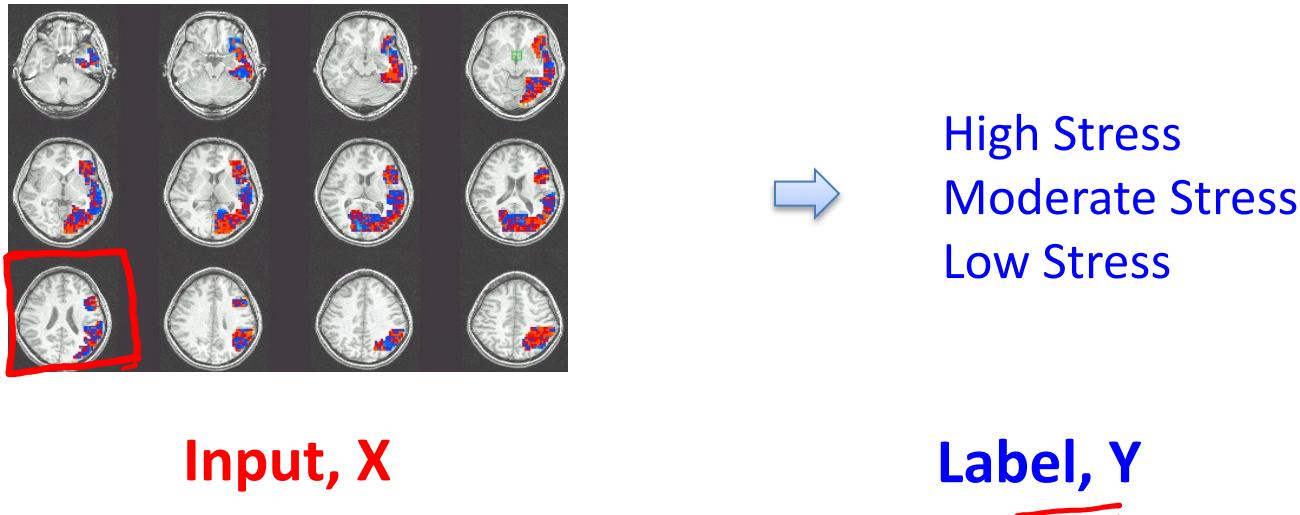
➤ Why prefer squared loss over abs loss?



- For training, replace expectation with average over training data

Classification

Goal: Construct **prediction rule** $f : \mathcal{X} \rightarrow \mathcal{Y}$

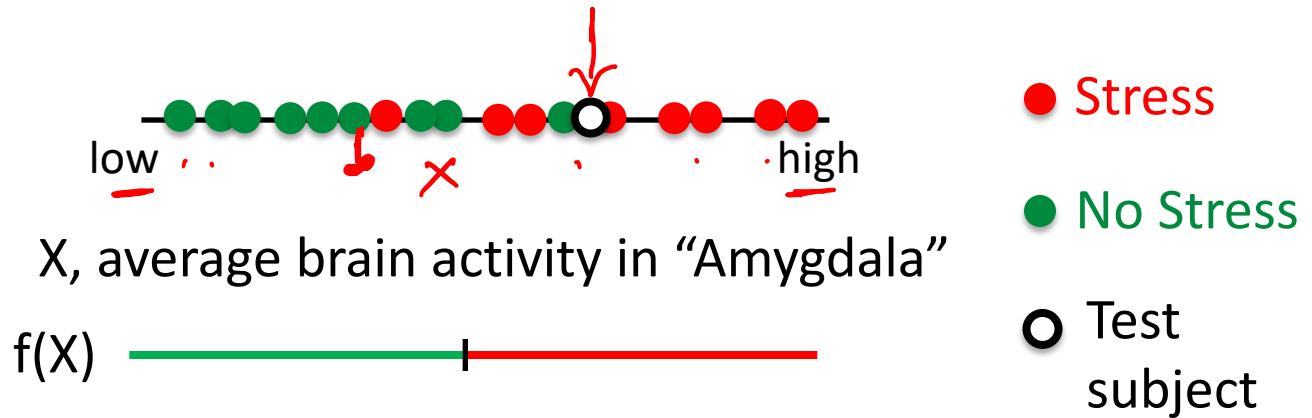


In general: label Y can belong to more than two classes
X is multi-dimensional (brain activity in all regions)

But lets start with a simple case:

label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”

Binary Classification



Model X and Y as random variables with joint distribution P_{XY} unknown

Training data $\{X_i, Y_i\}_{i=1}^n \sim \text{iid}$ (independent and identically distributed) samples from P_{XY}

→ Test data $\{X, Y\} \sim \text{iid}$ sample from P_{XY}

Training and test data are independent draws from same distribution

Optimal classifier

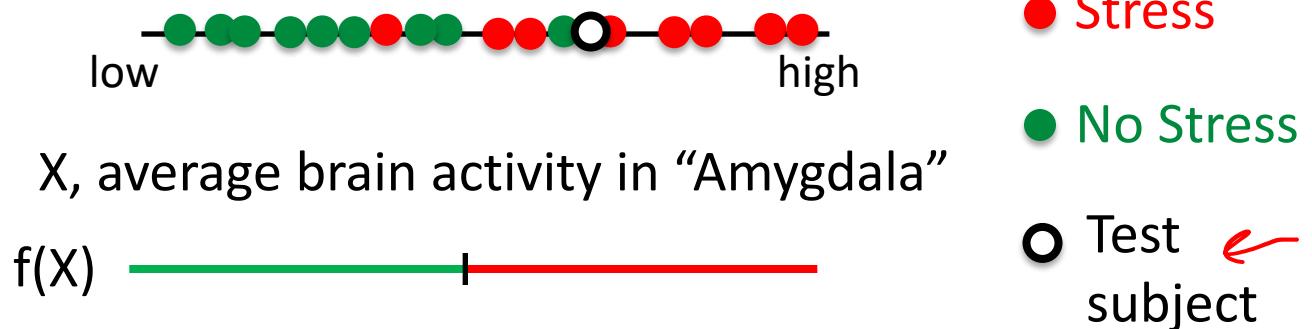
Minimize loss in expectation (over random test data)

$$\min_f E_{XY}[\text{loss}(f(X), Y)]$$

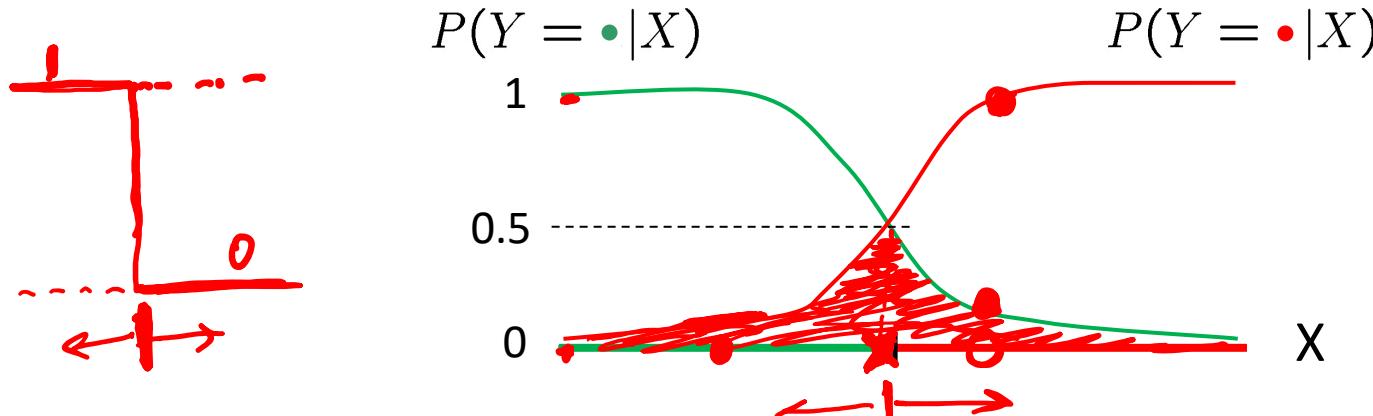
- Which classifier f is optimal for 0/1 loss, assuming we know data-generating distribution $\underline{P(X,Y)}$?

$$\{\underline{x}_i, \underline{y}_i\}_{i=1}^n$$

Bayes Classifier



Model X and Y as random variables



For a given X , $f(X) = \text{label } Y \text{ which is more likely}$

$$f(X) = \underset{Y=y}{\arg \max} P(Y = y | X = x)$$

$\arg \max_y P(Y=y | X=x)$

Bayes Rule

Bayes Rule:

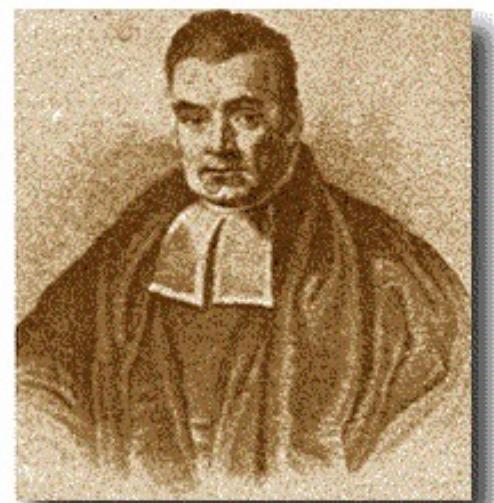
$$\underline{P(Y|X)} = \frac{\overline{P(X|Y)P(Y)}}{P(X)} \quad \leftarrow$$

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

To see this, recall:

$$\rightarrow P(X, Y) = \underline{P(X | Y) P(Y)} \quad \text{chain rule}$$

$$\rightarrow P(Y, X) = P(Y | X) P(X)$$



Thomas Bayes

Bayes Classifier – equivalent form

Bayes Rule:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$$

Bayes classifier:

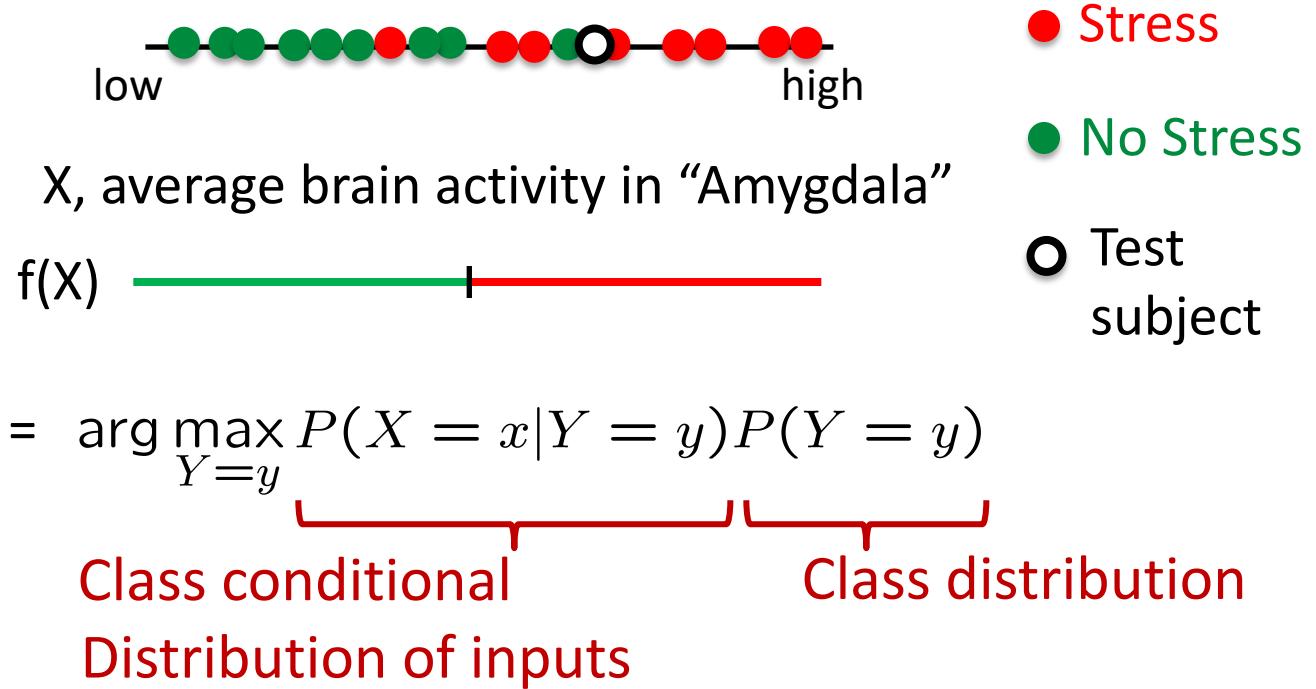
$$f(x) = \arg \max_{Y=y} P(Y = y | X = x)$$

$$= \arg \max_{Y=y} P(X = x | \underline{Y = y}) P(Y = y)$$

Class conditional Distribution of inputs

Distribution of class

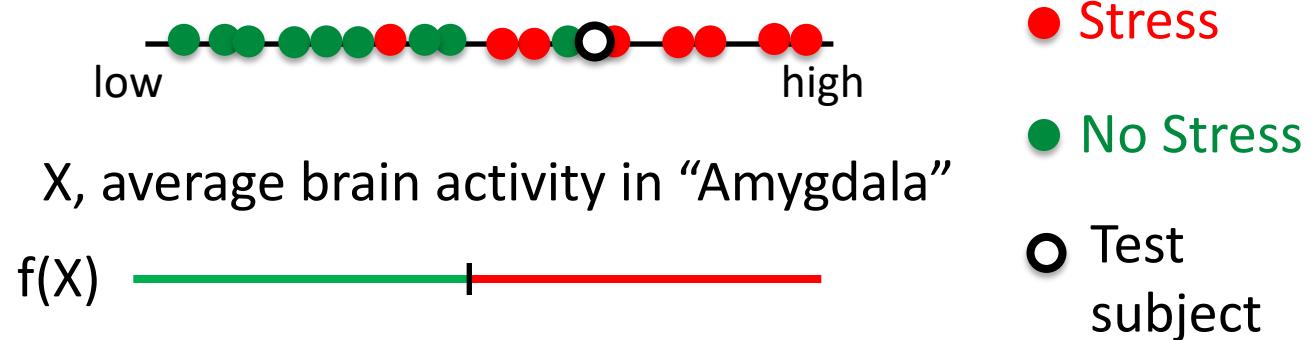
Bayes Classifier



We can now consider appropriate models for the two terms:

- Class distribution $P(Y=y)$
- Class conditional distribution of inputs $P(X=x | Y=y)$

Modeling class distribution



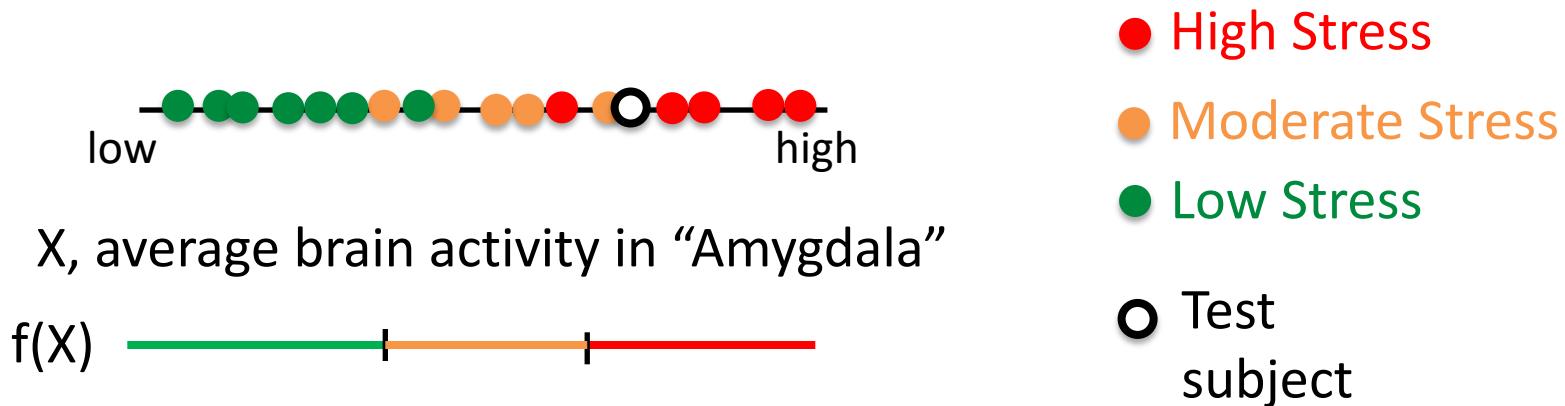
Modeling Class distribution $P(Y=y) = \text{Bernoulli}(\theta)$

$$P(Y = \text{red}) = \underline{\theta}$$

$$P(Y = \text{green}) = \underline{1 - \theta}$$

Like a coin flip

Modeling class distribution



➤ How do we model multiple (>2) classes?

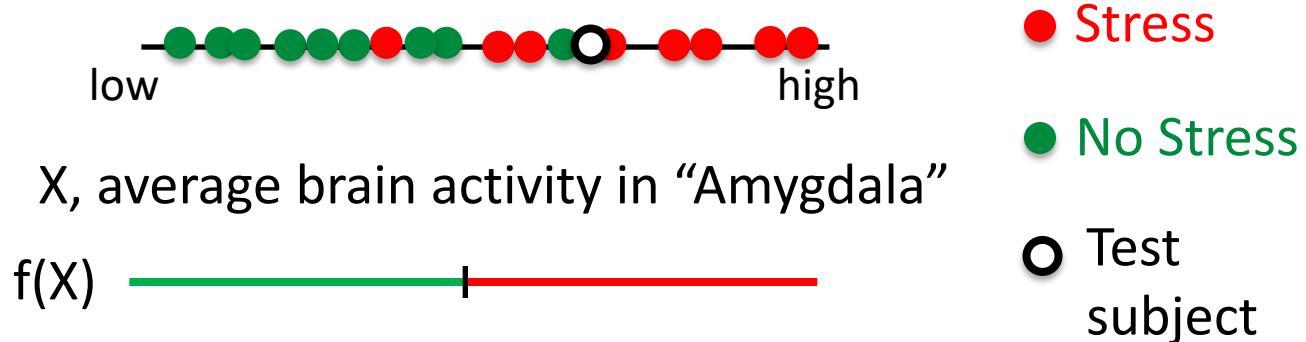
Modeling Class distribution $P(Y)$ = Categorical(p_H, p_M, p_L)

$$P(Y = \text{High Stress}) = p_H \quad P(Y = \text{Moderate Stress}) = p_M \quad P(Y = \text{Low Stress}) = p_L$$

Like a dice roll

$$p_H + p_M + p_L = 1$$

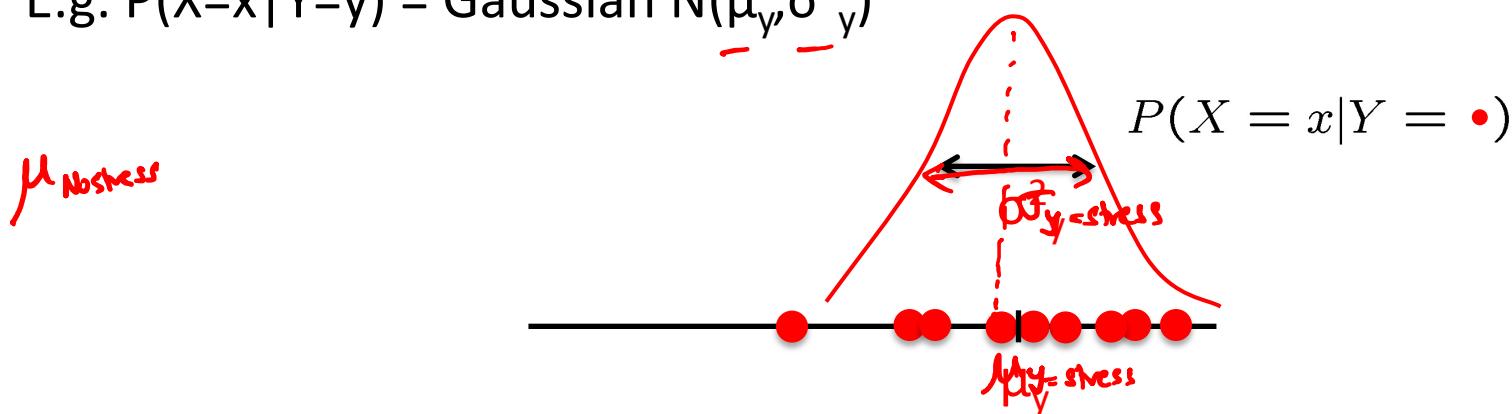
Modeling class conditional distribution of inputs



Modeling class conditional distribution of input $P(X=x | Y=y)$

➤ What distribution would you use?

E.g. $P(X=x | Y=y) = \text{Gaussian } N(\mu_y, \sigma_y^2)$

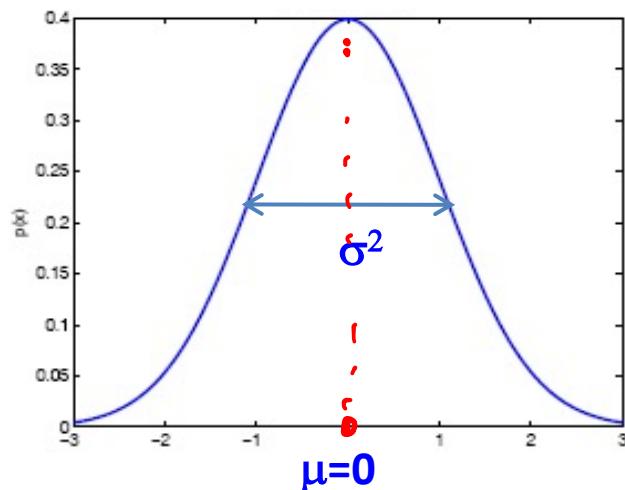
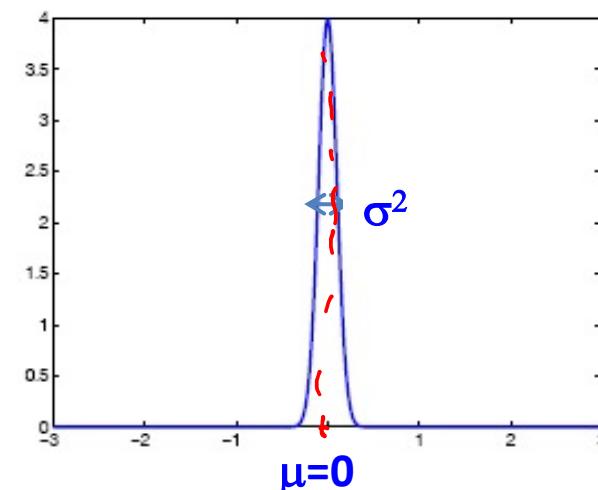


1-dim Gaussian distribution

X is Gaussian $N(\mu, \sigma^2)$

$$\mu = E[X]$$
$$\sigma^2 = E[(X - E[X])^2]$$

$$P(X = x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$



1-dim Gaussian Bayes classifier

$$\underline{f(X)} = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

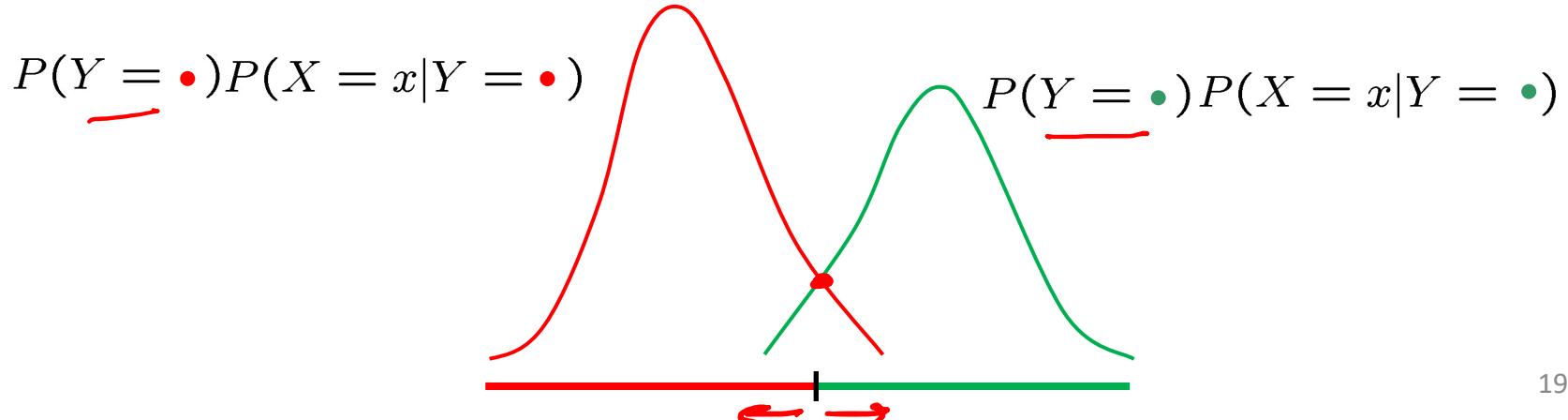
Learn parameters θ, μ_y, σ_y from data

Class conditional
Distribution of inputs

Class distribution

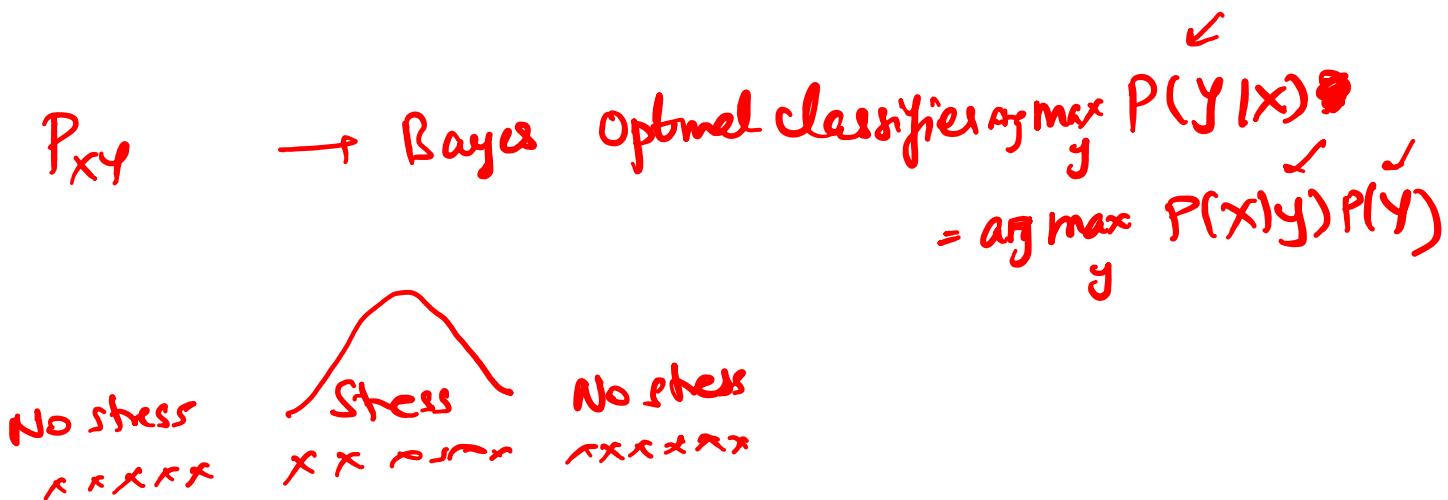
Gaussian(μ_y, σ^2_y)

Bernoulli(θ)



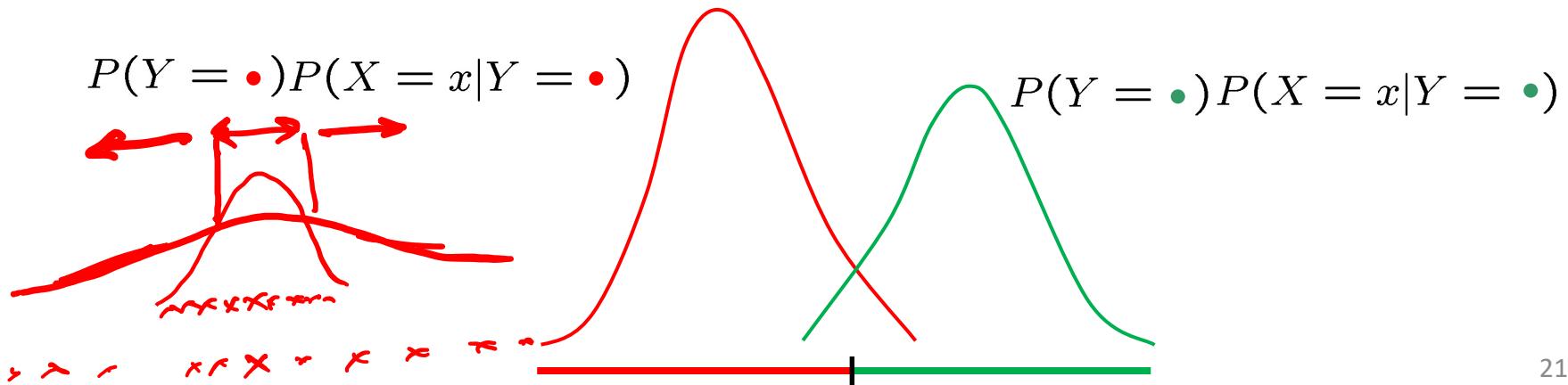
Poll

- Is the Gaussian Bayes Classifier optimal under 0/1 loss?
 - True
 - False

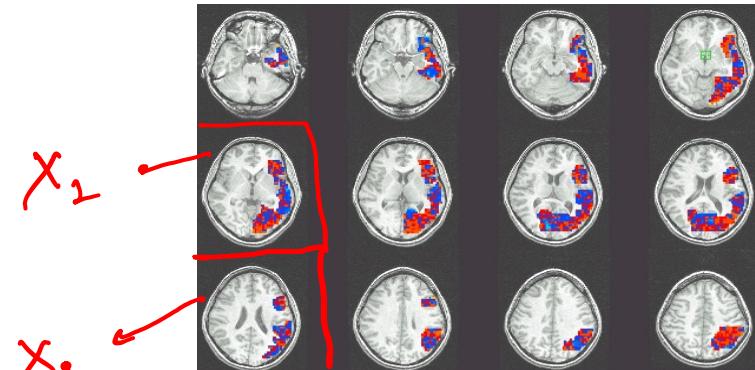


1-dim Gaussian Bayes classifier

- What decision boundaries can we get in 1-dim?



d-dimensional inputs



Input feature vector, X

High Stress
Moderate Stress
Low Stress

Label, Y

$$x_1 = \begin{bmatrix} 0.05 \\ -0.06 \\ 0.1 \\ 0.3 \\ -0.1 \\ \vdots \end{bmatrix}$$

Modeling class conditional distribution of input $P(X=x | Y=y)$

➤ What distribution would you use?

E.g. $P(X=x | Y=y) = \text{Gaussian } N(\mu_y, \Sigma_y)$

$$= =$$

$$\mu_y = \begin{bmatrix} d \times 1 \\ \vdots \end{bmatrix}$$

$$\Sigma_y = \begin{bmatrix} d \times d \\ \vdots \end{bmatrix}$$

d-dim Gaussian distribution

$$\mu = E[\mathbf{x}] \quad \Sigma_{ij} = E[(x_{ij} - E x_{ij})(x_{ij} - E x_{ij})^T] \leftarrow$$

\mathbf{X} is Gaussian $N(\mu, \Sigma)$

μ is d-dim vector, Σ is $d \times d$ dim matrix

$$\Sigma_{ii} = E[(x_{i:i} - E x_{i:i})^T] \leftarrow \text{var}(x_{i:i})$$

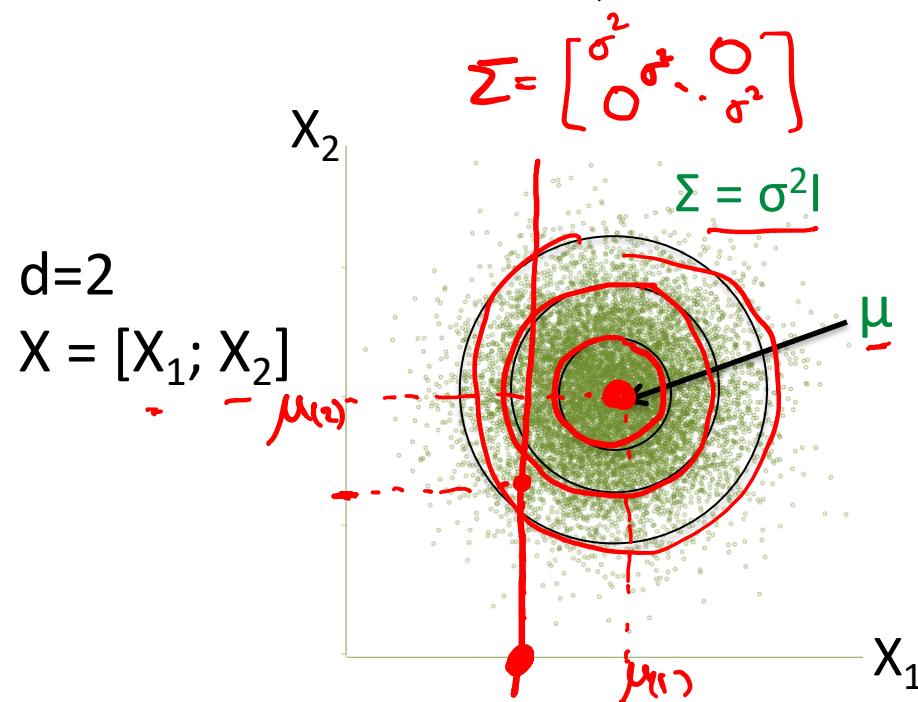
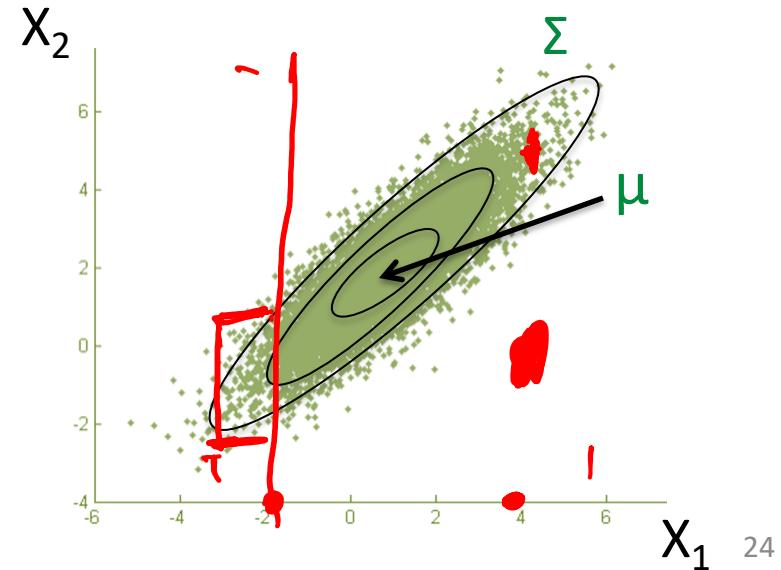
$$P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

d-dim Gaussian distribution

X is Gaussian $N(\mu, \Sigma)$

μ is d-dim vector, Σ is $d \times d$ dim matrix

$$P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),$$



d-dim Gaussian Bayes classifier

$$f(X) = \arg \max_{Y=y} P(X = x|Y = y)P(Y = y)$$

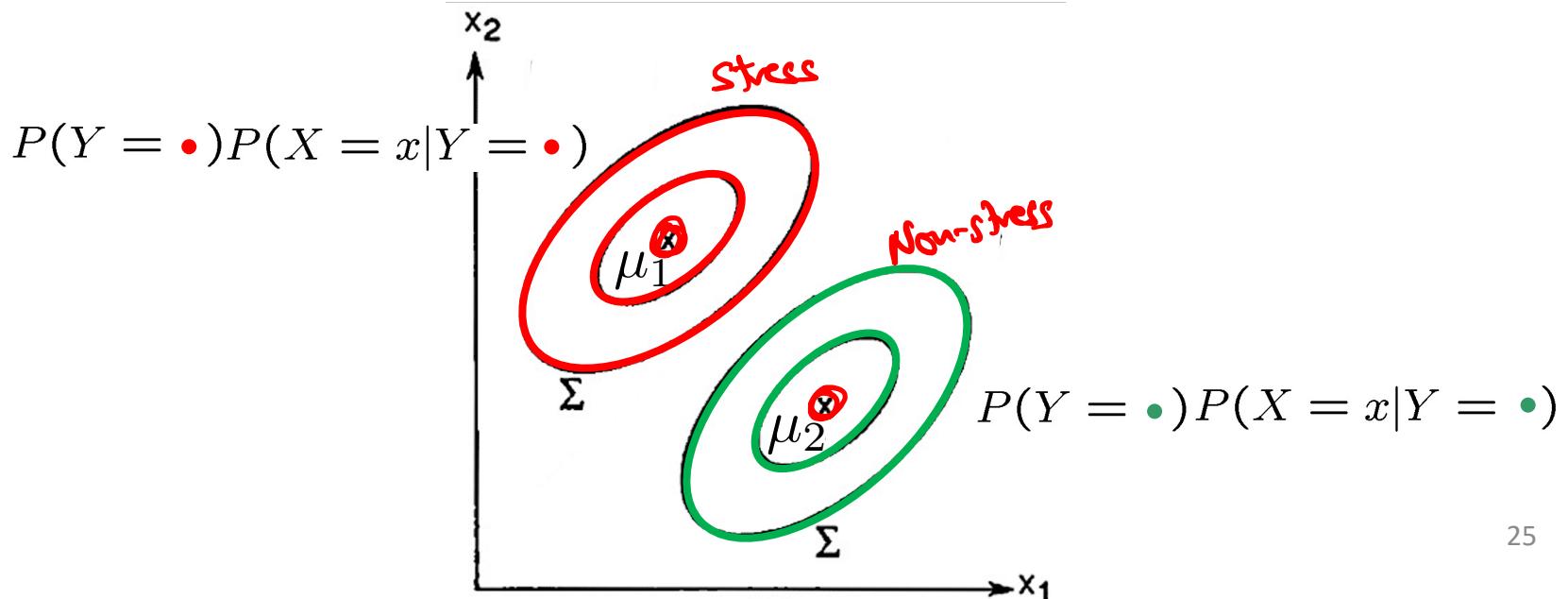
Learn parameters θ, μ_y, Σ_y from data

Class conditional
Distribution of inputs

Class distribution

Gaussian(μ_y, Σ_y)

Bernoulli(θ)



d-dim Gaussian Bayes classifier

$$f(X) = \arg \max_{Y=y} P(X = x | Y = y) P(Y = y)$$

- What decision boundaries can we get in d -dim?

Class conditional Distribution of inputs

Class distribution

