Clustering
Aarti Singh

Machine Learning 10-315
Apr 6, 2022

Some slides courtesy of Eric Xing, Carlos Guestrin

ACHI




What is clustering?

* Clustering: the process of grouping a set of objects into classes of similar

objects
— high intra-class similarity
#
— low inter-class similarity
Inter-cla:
— It is the most common form of unsupervised learning

Clustering is subjective
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What is Similarity?

Hard to
define! But we
know it when
we see it

The real meaning of similarity is a philosophical question. We will take a
more pragmatic approach - think in terms of a distance (rather than
similarity) between vectors or correlations between random variables.



Distance metrics
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Correlation coefficient

= (X, X, or) Xp) Random vectors (e.g. expression levels
= (Y1, Yor over Vp) of two genes under various drugs)

Pearson correlation coefficient B
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Clustering Algorithms

* Partition algorithms
* K means clustering
* Mixture-Model based clustering
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* Hierarchical algorithms

e Single-linkage

7
* Average-linkage #
* Complete-linkage ~
* Centroid-based -, -




Partitioning Algorithms

Partitioning method: Construct a partition of n objects into a
set of@lusters

Given: a set of objects and the number K

Find: a partition of K clusters that optimizes the chosen
partitioning criterion

— Globally optimal: exhaustively enumerate all partitions &«

—

— Effective heuristic method: K-means algorithm




K-Means
Algorithm

Input — Desired number of clusters, k -~

Initialize — the k cluster centers (randomly if necessary)

lterate —

1. Assign points to the nearest cluster centers .~

2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming
the memberships found above are correct.

Termination —

If none of the objects changed membership in the last iteration, exit.
Otherwise go to 1.



K-means Clustering: Step 1
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K-means Clustering: Step 2
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K-means Clustering: Step 3
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K-means Clustering: Step 4
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K-means Clustering: Step 5
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K-means Recap ...

@ Randomly initialize k centers

m—=

(] “(0) = };1’1-(?),___, “k(o)



K-means Recap ...

@ Randomly initialize k centers
(] “(0) = u1(0),___, “k(o)
Iteratet =0, 1, 2, ...
@ Classify: Assign each point je{1,...m} to nearest

center: " clugtos aszignment
(] C(t)(j) — arg min ||g;"” — z;||” j"\*’“’rd

:1 ..... k: - ‘

—-



K-means Recap ...

@ Randomly initialize k centers
NTCITHCRNTRC
Iteratet =0, 1, 2, ...

@ Classify: Assign each point je{1,...m} to nearest
center:

- CO(j) +arg_min " —z;|* £—

=1,..., T .
@ Recenter: |, becomes centroid of its points:

(+) ; 2 ]
— arg@i ||ﬂ— ZC]H (S {laaf}

Equwalent to u; « average of its points!



What is K-means optimizing?

@ Potential function F(u,C) of centers p and point

allocations C: (= duder b5
m 5 (,s&id«;\ \s
F(p,C) =/ oy — =l asdaml
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@ Optimal K-means: L (Ko %eD

I min,ming F(u,C)
cap—

» |Is the K-means objective convex?



K-means algorithm

@ Optimize potential function:

s &
minmin F(p,C) = minmin >~ )~ ||;L2¢—:z:j||2
H ¢ M C i . . .

=1 5:C(5)=i

@ K-means algorithm: (coordinate descent on F)

(1) Fix p, optimize C Expected cluster assignment «

(2) Fix C, optimize m Maximum likelihood for center
&

- —

Generalization: EM (Expectation-Maximization) algorithm




Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

* Results are quite sensitive to seed selection.
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Seed Choice

e Results can vary based on random seed selection.

* Some seeds can result in poor convergence rate, or
convergence to sub-optimal clustering.
— Try out multiple starting points (very important!!!)
— k-means ++ algorithm of Arthur and Vassilvitskii

_——

key idea: choose centers that are far apart

(probability of picking a point as cluster center X
distance from nearest center picked so far)
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Other Issues

e Number of cluster@

— Objective function m >
> ey — =l <
j=1

» Can you pick K by minimizing the objective over K?

— Look for “Knee” in objective function

1.00E+03
9.00E+02
o= 3 \
©  800Es02
5 N
7.00E+02
= X
=  6.00E+02
£ \
O 5.00E+02 \
L2 4.00E+02
5 X
;i 3.00E+02 \
O 2.00E+02 ﬁ -
O 1.00E+02 e ——————
0.00E+00 T r \\




Other Issues

e Sensitive to Outliers

— use K-medoids

e Shape of clusters
Assumes isotropic, equal variance, convex clusters
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Partitioning Algorithms

e K-means

— hard assignment: each object belongs to only one

Lo
cluster

* Mixture modeling @

— soft assignment: probability that an object
belongs to a cluster

Generative approach
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