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Unsupervised Dimensionality
Reduction

* Linear
Principal Component Analysis (PCA)

Factor Analysis
Independent Component Analysis (ICA)

* Nonlinear X3
Kernel PCA
, Laplacian Eigenmaps, ISOMAP, LLE
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Kernel PCA HW4!

Latent features: linear in ¢(x) where ¢(x). ¢(x’) = K(x,x’) that capture
maximum variance or minimum reconstruction error

PCA:

Top d eigenvectors (each D dimensional) of sample covariance XXT

Low d-dimensional embedding of a point: [vi1Txi, v2Txi, ... vdTxi]

Kernel PCA:

Top d eigenvectors (each n dimensional) of kernel matrix K(X,X)

Low d-dimensional embedding of a point: [v(i), Va(i), ..., v4(i)]

Eigenvectors are not PCs4ut projectiongdf data points



PCA Summary

PCA finds latent features linear in original features x that capture
— Maximum variance amongst all linear features

— Minimum reconstruction error when recovering points from PC
projections

Non-convex problem with simple solution:
PCs = eigenvectors of sample covariance matrix

Lower (d < D) dimensional embedding of data point =
projection of data point onto d PCs

Kernel PCA: latent features linear in ¢(x) where ¢(x). ¢p(x’) = K(x,x’)
that capture maximum variance or minimum reconstruction error
— Directly get projections of data points



