Dimensionality Reduction
PCA

So far

) M) MAP

2 Nomgoiamedis
Aarti Singh doreay

Machine Learning 10-315
April 4, 2022

Slides Courtesy: Tom Mitchell, Eric Xing, Lawrence Saul

ACHI




High-Dimensional data

High-Dimensions = Lot of Features

Document classification

Features per document =

thousands of words/unigrams

millions of bigrams, contextual

information

Surveys - Netflix
480189 users x 17770 movies

—
—
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movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 ;4 3 1 3 '3
—

George ? ? 3 1 2 5

Susan 4 3 1 ? 5 1

Beth 4 3 ? 2 4 .




High-Dimensional data

* High-Dimensions = Lot of Features

High resolution images
millions of pixels

Diffusion scans of Brain
300,000 brain fibers




Curse of Dimensionality

 Why are more features bad?

— Redundant features (not all words are useful to classify a document)
more noise added than signal

— Hard to interpret and visualize

— Hard to store and process data (computationally challenging)

— Complexity of decision rule tends to grow with # features. Hard to learn
complex rules as it needs more data (statistically challenging)



Dimensionality Reduction

e Feature Selection — Only a few features are relevant to the learning task
— g /

‘ X3 - Irrelevant

v %
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e Latent features — Some linear/nonlinear combination of features provides a
more efficient representation than observed features




Feature Selection

* One Approach: Regularization (MAP)
Integrate feature selection into learning objective by penalizing number of

features with non-zero weights S W
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Minimizes # features Convex Small weights of
chosen compromise features chosen 6




Latent Features

Combinations of observed features provide more efficient representation, and
capture underlying relations that govern the data

E.g. Ego, personality and intelligence are hidden attributes that characterize
human behavior instead of survey questions

Topics (sports, science, news, etc.) instead of documents
Often may not have physical meaning

* Linear
- Principal Component Analysis (PCA) <

- Factor Analysis

- Independent Component Analysis (ICA)

 Nonlinear
. Kernel PCA
_ Laplacian Eigenmaps, ISOMAP, LLE




Principal Component Analysis (PCA)

L=
a=l

When data lies on or near a low d-dimensional linear subspace, axes of
this subspace are an effective representation of the data

|dentifying the axes is known as Principal Components Analysis, and
can be obtained by Eigen or Singular value decomposition



Data for PCA

Data X = [x4, X, ..., Xn] Where each data point x; is D-dimensional vector
I

X is D x n matrix

C—m

1
Assume data are centered i.e. sample mean — E Xi =

What if data is not centered?
Subtract off sample mean from each data point

Since data matrix is centered, sample covariance matrix can be written as
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Principal Component Analysis (PCA)

4

Principal Components (PC) are orthogonal
directions that capture most of the variance

int he Jata

1st PC — direction of greatest variability in
data

Projection of data points along 1st PC
discriminate the data most along any one
direction

Take a data point xi (D-dimensional vector)

T
Projection of xi onto the 1st PC v is vTxi -V &
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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
unit norm directions that capture most of
the variance in the data

1st PC — direction of greatest variability in
data

2nd PC — Next orthogonal (uncorrelated)
direction of greatest variability

(remove all variability in first direction, then
find next direction of greatest variability)

And soon ...
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D = 4 <P
Prmapal Component Analysis ( PCA)

Let V1, V2, ..., Vd denote the principal components

Orthogonal and unit norm Vit vj = i£j] &
1A || . vI vi=1

<~
Find vector that maximizes sample variance of projection

1 n
=y (vi'x)? = vIXXTy

L~
?(P\ max viIXXTy st. viv=1
AP~ e ——.

Poll:

> Is this a convex optimization problem?
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Prmapal Component Analysis ( PCA)

Let v1, v2, ..., vd denote the principal components

Orthogonal and unitnorm  viTv;=0 i#]j

ViT Vi = 1

Find vector that maximizes sample variance of projection

S|+

n
Z (VT)(7;)2 = vIXX!y
] -

mélx vIXXTy st. viv=1

“>'

Lagrangian: maxy T XX s _ gl Wrap constraints into the

\ objective function
VN
9/0v =0 (XXT — A)v = 0 = (xXT)yv = av| &

s —— =" L (=

Ty X\/ = T, _
PEE XXV = AV = A
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Principal Component Analysis (PCA)

(XXDYyv = Av

Therefore, v is the eigenvector of sample covariance

matrix XXT

Sample variance of projection —:'VTXXTV = A}év = A /n

Thus, the eigenvalue A denotes the amount of variability captured along
that dimension (aka amount of energy along that dimension).

Eigenvalues A1 > A2 > A3 > ..,
o -~

The 1st Principal component v1 is the eigenvector of the sample covariance
matrix XXT associated with the largest eigenvalue A1

The 2" Principal component vz is the eigenvector of the sample covariance
matrix XXT associated with the second largest eigenvalue A2

And soon ... 14



Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the
vectors capture maximum variance in the data

S|+

n
> (vix,)? =vIXXTv

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction
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Dimensionality Reduction usmg PCA
7(74 DAY

The eigenvalue A denotes the amount of variability captured along
that dimension.

Zero eigenvalues indicate no variability along those directions =>
data lies exactly on a linear subspace

Only keep data projections onto principal components with non-

zero eigenvalues, say v1, ..., vdwhere d = rank (XXT) 42D
= —

2O T

=N

Original Representation Transformed representation
data point projections .
xi = [xil, xi2, .... xP]T [viTXi, v2TXi, .. VdT>_<_]
(D-dimensional vector) (d- -dimensional vector)

d<D
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Dimensionality Reduction using PCA

In high-dimensional problem, data usually lies near a linear subspace, as
noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance.

25 ~ a‘o
_ Variance (%) = ratio of variance along given
20 w g g
— o g principal component to total variance of all
2 ..
Y 15 - h,/ principal components
c
= 10 -
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>
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PC1 PC2 PC3 PC4 |PC5 PC6 PC7 PC8 PC9 PC10
-~ —_ = -

You might lose some information, but if the eigenvalues are small, you don’t lose
much 18



Example of PCA

— — T P

0.0 0.2 0.4 0.6 v 1.0

Eigenvectors and eigenvalues of
covariance matrix for n=1600

inputs in d=3 dimensions.




Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)




Example: MNIST digits

* 28x28 images = 784 PCA vectors
— G——

* Projectt

Onginal Image

S W 15 20
784 components

Original Image

] s w 15 0
784 components

Onginal Image

2 S u 1 w0
784 components

s

P

PH)

95% of Explained Variance

s 10 18 2
154 componerny

o
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95% of Explained Variance

o s 10 LY 20
154 components
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95% of Explained Variance

s 10 1 2
154 components
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ensional space and then

90% of Explained Variance

5 10 15 0
87 components
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90% of Explained Variance
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&7 components
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s 1 135 20
87 components
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90% of Explained Varance

80% of Explained Variance

S W 15 20 28
43 components

Sy

Rn‘ﬁ(xl Explained Variarnce

'] s w15 o 3

43 components
L4

80% of Explained Variance

S W 15 20 2
43 components
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roject back up

50% of Explafied Variance
]

s 10 15 20 25
11 components
Ly

50% of Explained Variance

o s s "
11 components

—

10 5

50% of Explained Variance
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Projecting MNIST digits

POy



Projecting MNIST digits
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_ Unsupervised Dimensionality
x Reduction

Linear
S Principal Component Analysis (PCA)

Factor Analysis
Independent Component Analysis (ICA)

Nonlinear
Kernel PCA
Laplacian Eigenmaps, ISOMAP, LLE

- Autoencoders
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