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SVM summary so far . .. ..
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SVM primal vs dual

n training points (Xq, o) Xp) S
d features X; is a d-dimensional vector ¥ .
+ & t ..,_Q
Hard-margin: minimizey,;, sw.w .
Primal problem (w.xj +b)y; > 1, Vj i

w - weights on features (d-dim problem)

* Convex quadratic program — quadratic objective, linear
constraints

* But expensive to solve if d is very large
e Often solved in dual form (n-dim problem)



SVM primal vs dual

n training points (Xq, o) Xp) + 5
d features X; is a d-dimensional vector ¥ .
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w - weights on features (d-dim problem)
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a - weights on data points (n-dim problem)



Dual SVM: Sparsity of dual solution

oy (8D Y -1 Y=
- =

v’
W= ) ajy;X; <
j T e —

Complementary
slackness implies
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non-zero : where
constraint is active and
tight

J J ¥
(w.x; + E))yj =1

Support vectors —
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Dual SVM - linearly separable
(aka hard margin) case
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Use any one of support vectors with for any k where oy, > 0

o, >0 to compute b since constraint is .
tight (w.x, +b)y, =1 3 (Fedy) — Sugrot e




Dual SVM — non-separable case
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Dual SVM — non-separable case

L 1
MaxXimizZeq ZZ Q; — 5 Zz,] Q0 5YY XK. X

2 &y; = O
comes from 8_L — 0 Lntuition: :

& It C->eo, recover hard-margin SVM

Dual problem is also QP W = Z ;y;iX; ~
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Solution gives as — Y, — WX},
for any k where C' > ap. > 0
—_——




So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!



Separable using higher-order features
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Polynomial features ¢(x)

m — input features d — degree of polynomial
— d —1)]
hum. terms = [ 4T ™1 :( +m—1) ~ I
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Dual formulation only depends on
dot-products, not on w!
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d(x) — High-dimensional feature space, but never need it explicitly as long

as we can compute the dot product fast using some Kernel K ,



Dot Product of Polynomial features

d(x) = polynomials of degree exactly d
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The Kernel Trick!

d
. . 1 2
maximizea  Y; o — 3 i j @iayiyi K (i, X;) o
K(x;,x ]) — CD(XZ) CD(X])
2. aiy; = 0
C>a; >0

Never represent features explicitly
— Compute dot products in closed form

Constant-time high-dimensional dot-products for many
classes of features
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Common Kernels

d=%
Polynomials of degree d X & KXz
K(u,v)=(u-v)* v
Polynomials of degree up to d [ X, X, X sz XyPy

—

K(u,v) = (u-v+41)%

Gaussian/Radial kernels (polynomials of all orders — recall
series expansion of exp)

> _ 2
K(u,v) =exp Mu=vilFy = pw) -6
vt 2g_2 2 (-\—‘L*.‘;*f:—-
Sigmoid “ & 21 3

K(u,v) =tanh(nu-v +v)
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Mercer Kernels

What functions are valid kernels that correspond to feature
vectors ¢(x)?

Answer: Mercer kernels K

* Kiscontinuous v .
e Kis Symmetric p K(“N’ = \((V,‘M\ = 4“/) #lu)

* Kis positive semi-definite, i.e. x"Kx > 0 for all x j\
Clm—

d

Ensures optimization is concave maximization
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Overfitting

* Huge feature space with kernels, what about
overfitting???

— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting



What about classification time?
)+ T ki

 For anew input x, if we need to represent ®(x), we are in trouble!

* Recall classifier: sign(w.®(x)+b) 44—

[ s
bw=> oy P(x;) 4 A
ol i - el J,;g.f\

b=y — W.P(xg)

for any k where C > a5 > 0

e Using kernels we are cool!

K(u,v) = ®d(u) - (v)
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SVMs with Kernels

v’
e Choose a set of features and kernel function

* Solve dual problem to obtain support vectors a; -

* At classification time, compute:

w-P(x) =) ayK(x,x;)
Pt

b=y — )y K(Xp,%;)
for any k where C > ap. > 0

m sign (w- d(x)+bd)
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SVMs with Kernels

K(Xixp) = XXy

* |ris dataset, 2 vs 13, Linear Kernel




SVMs with Kernels

* Iris dataset, 1 vs 23, Polynomial Kernel degree 2

No. of Support Vectorg 30)325.0%)
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SVMs with Kernels |, .,- e{nx-u\)

* |ris dataset, 1 vs 23, Gaussian RBF kernel
I—] Svgma @ / [ | Saparable Bound

Mo. of Suppart vectors{ 554045 5%



SVMs with Kernels

* Iris dataset, 1 vs 23, Gaussian RBF kernel

—_—

Gaussian RBF | Sioma [ | Separable Bowndll [ 1 |

No. of Suppart Yectors: 41 (34 2%)
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SVMs with Kernels

* Chessboard dataset, Gaussian RBF kernel

No. of Suppart Vectors: 174 (58.0%)

<] pisens | separavi S| [ 1
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SVMs with Kernels

* Chessboard dataset, Polynomial kernel

|Polymnul‘ = ] Degree @ [T] Sepzravle Bound \ 1 :

Mo. of Support Wectors: 147 (49.0%)
=
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USPS Handwritten digits
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L 1000 training and 1000 test instances

Results:
SVM on raw images ~97% accuracy




Kernels in Logistic Regression

1
— P(Y=1|z,w) = ——a(s w-x+b
1 4+ e~ (W-P(x)+b)

e

* Define weights in terms of features:
W = ZQ{Z’CD(XZ') Yi J &
~ -

1
P(Y =1 r, W) =
( ’—|’ ) 1 —|—e_(2z'(;i¢(xi)-¢(x)-|—b) &
B 1+6_(Zz’?‘_iK(Xa>iil—|‘Q &

* Derive simple gradient descent rule on a.

e
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SVMs vs. Logistic Regressior\lx

SVMs Logistic
Regression

Loss function Hinge loss > Log-loss&
High dimensional Yes! Yes!
features with o v
kernels
Solution sparse Often yes!/ Almost always no!
Semantics of “Margin” Real probabilities
output v v




Can we kernelize linear regression?

29



Linear (Ridge) regression

n
min Sy - Xi8)% + 18115 B=(ATA\+ \I)T'ATY
1=1 — -

o - — I;'x])
Recall _ - -
X4 x xR
A= : = : e :
Xn | [ xfV  xP)

Hence ATAis a p x p matrix whose entries denote the (sample)
correlation between the features

NOT inner products between the data points — the inner product
matrix would be AATwhich is n x n (also known as Gram matrix)

Using dual formulation, we can write the solution in terms of AAT

EE—

30



Kernelized ridge regression .
R kT
(WA IATY it

Using dual, can re-write solution as:

T
~ AY = KK
G- AT(AAT 4aD Yy «  BFO !

= B o~ X 3 L e a (AABDY
How does?m:help? 3: .).($ “ ).(..A- -

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

AAT involves only inner products between the training points
BUT still have an extra AT

Recall the predicted labelis f,(X) = X3
= XA (AAT + )Y

XAT contains inner products between test point X and training points! .,



Kernelized ridge regression

B=(ATA +)D)'ATY fn(X) = X5

Using dual, can re-write solution as:

P

B=AT(AAT + AI)7'Y

How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

fo(X) = Kx (K + AI)"'Y where KX(Z) = oY) -0l Xy)
Work with kernels, never need to write out the high-dim vectors

Ridge Regression with (implicit) nonlinear features ¢(X)!

f(X) :qS(X)ﬁ 32



What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss
Relationship between SVMs and logistic regression
— 0/1 loss
— Hinge loss
— Log loss
Dual SVM formulation
— Easier to solve when dimension high d > n

— Kernel Trick
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