

Support Vector Machines (SVMs)

contd...

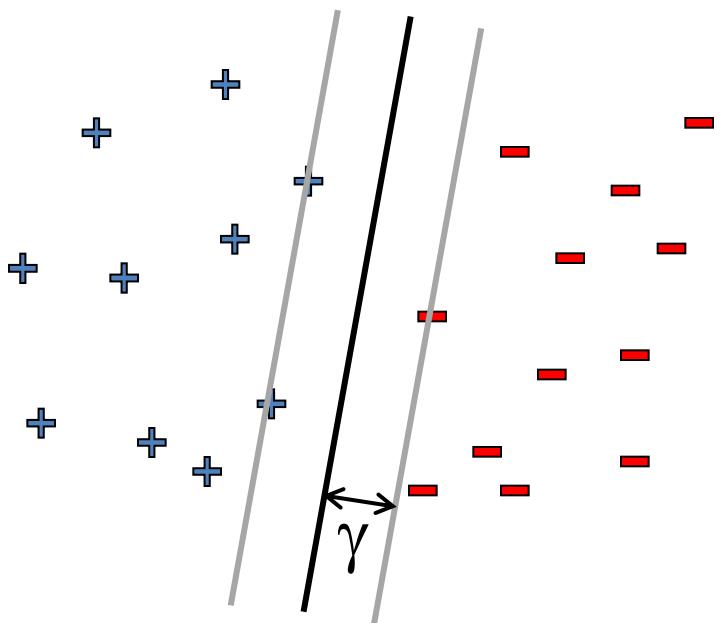
Aarti Singh

Machine Learning 10-315
Mar 23, 2022

MACHINE LEARNING DEPARTMENT

Hard-margin SVM

Data perfectly separable by a linear decision boundary



Hard margin approach

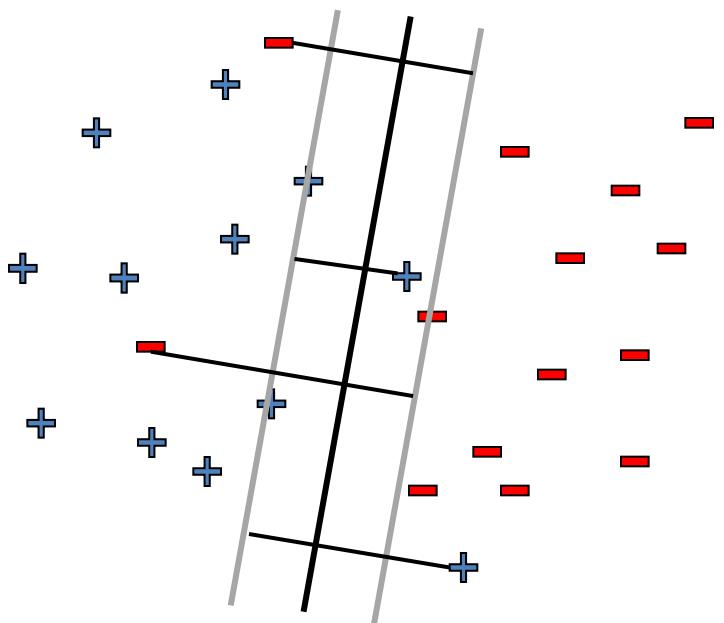
$$\begin{aligned} & \min_{\mathbf{w}, b} \mathbf{w} \cdot \mathbf{w} \\ \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 \quad \forall j \end{aligned}$$

Solve using Quadratic Programming (QP)

Margin, $\gamma \propto 1/\|\mathbf{w}\|$

Soft-margin SVM

Allow “error” in classification



Soft margin approach

$$\begin{aligned} & \min_{\mathbf{w}, b, \{\xi_j\}} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\ \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j \\ & \xi_j \geq 0 \quad \forall j \end{aligned}$$

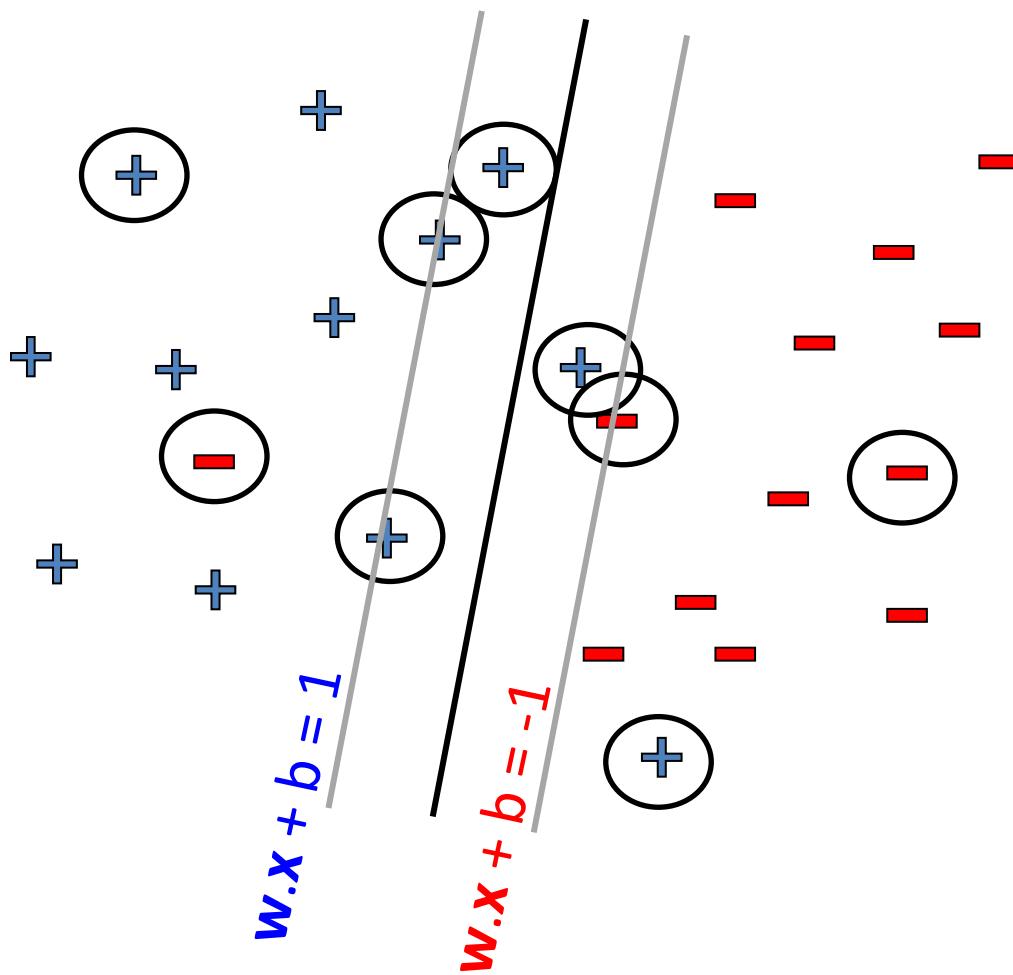
ξ_j - “slack” variables
= (>1 if x_j misclassified)
pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Still QP ☺

$$\begin{aligned}
 & \min_{\mathbf{w}, b, \{\xi_j\}} \mathbf{w} \cdot \mathbf{w} + C \sum \xi_j \\
 \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j \\
 & \xi_j \geq 0 \quad \forall j
 \end{aligned}$$

Slack variables

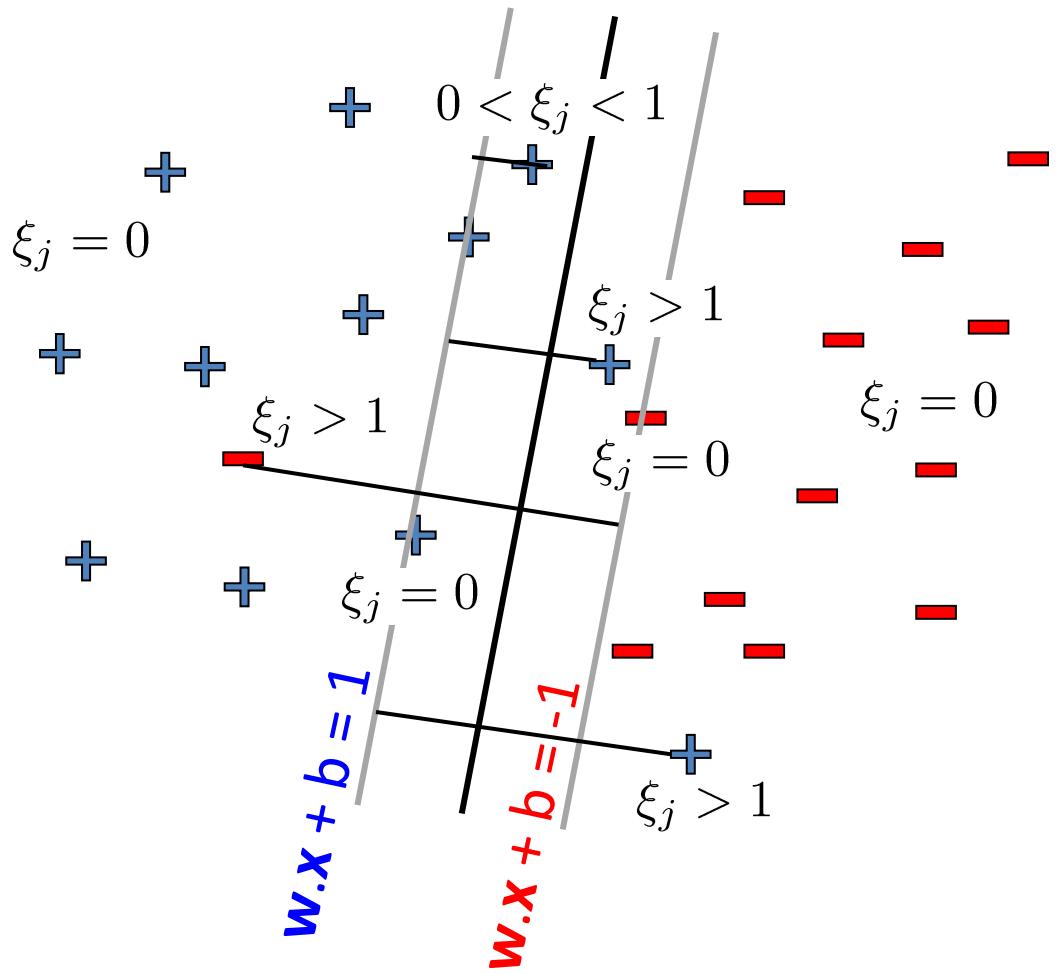


$$(\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j$$

What is the slack ξ_j for the following points?

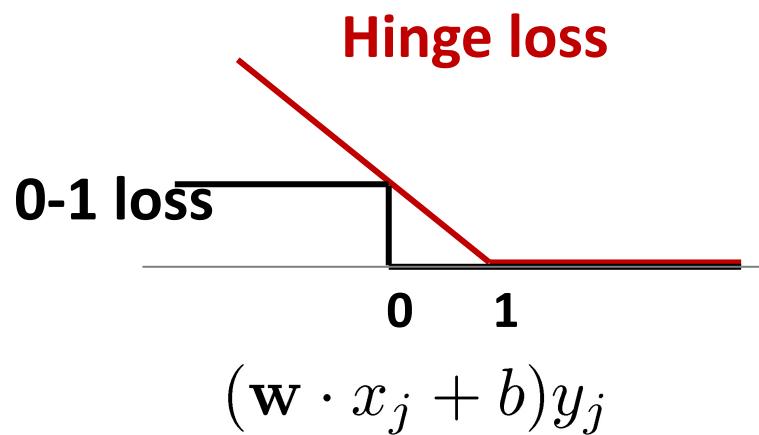
Confidence | Slack

Slack variables – Hinge loss



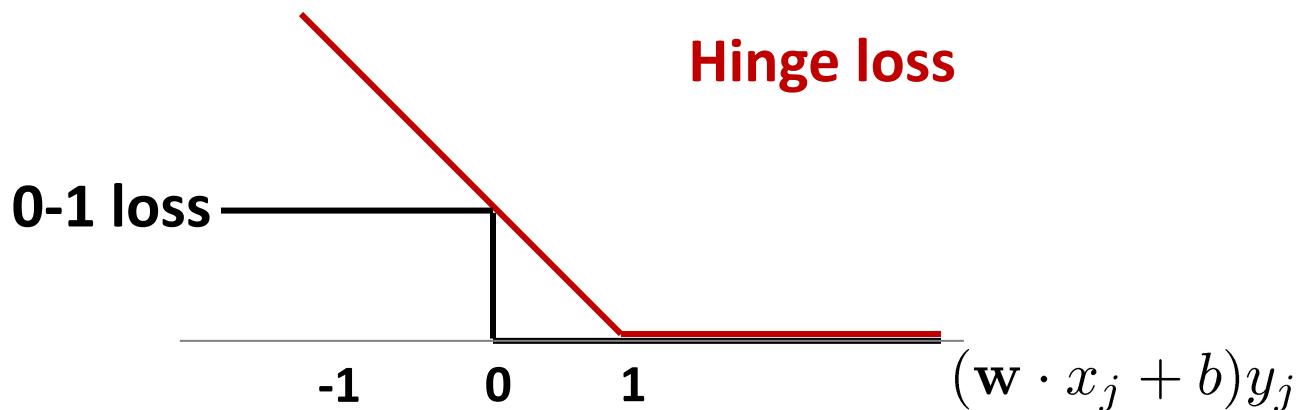
Notice that

$$\xi_j = (1 - (w \cdot x_j + b)y_j)_+$$

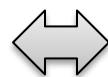


Slack variables – Hinge loss

$$\xi_j = (1 - (\mathbf{w} \cdot \mathbf{x}_j + b)y_j)_+$$



$$\begin{aligned} & \min_{\mathbf{w}, b, \{\xi_j\}} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\ \text{s.t. } & (\mathbf{w} \cdot \mathbf{x}_j + b)y_j \geq 1 - \xi_j \quad \forall j \\ & \xi_j \geq 0 \quad \forall j \end{aligned}$$

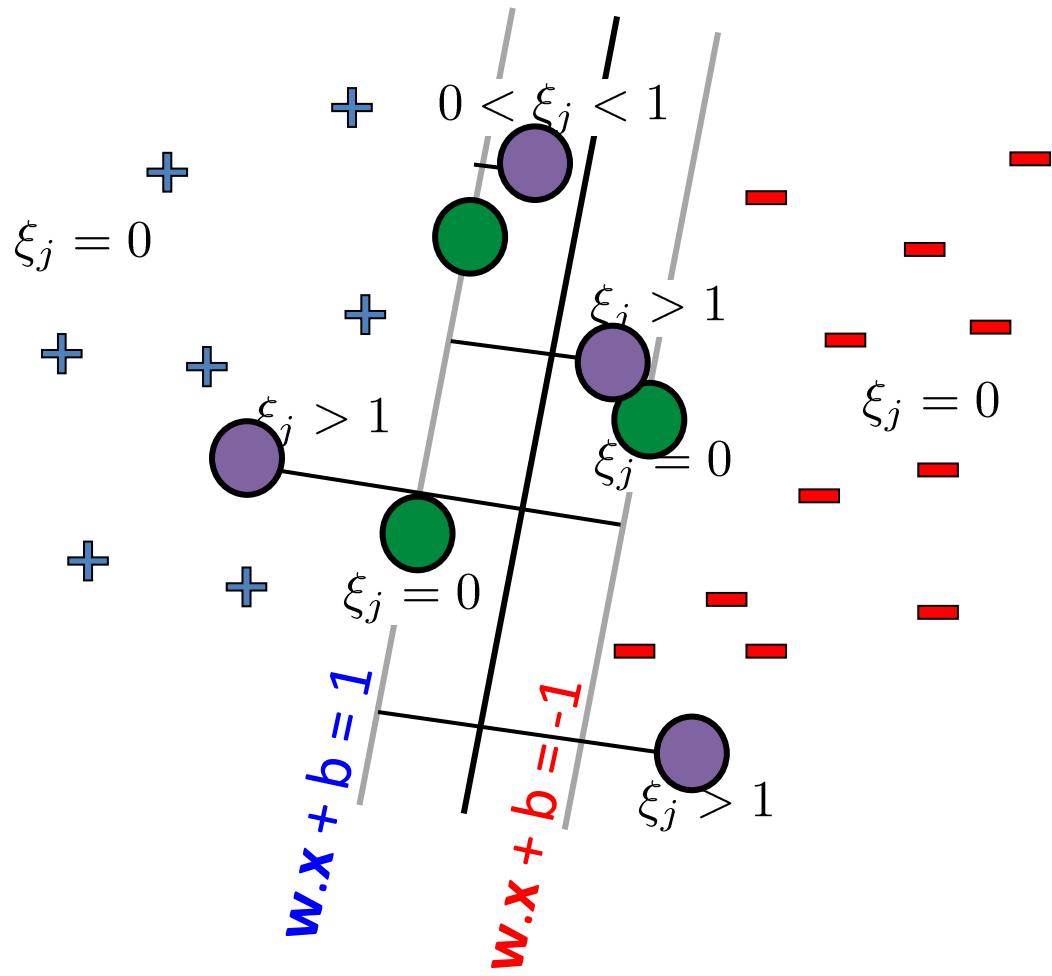


Regularized hinge loss

$$\min_{\mathbf{w}, b} \mathbf{w} \cdot \mathbf{w} + C \sum_j (1 - (\mathbf{w} \cdot \mathbf{x}_j + b)y_j)_+$$

$$\begin{aligned}
 \min_{\mathbf{w}, b, \{\xi_j\}} \quad & \mathbf{w} \cdot \mathbf{w} + C \sum \xi_j \\
 \text{s.t.} \quad & (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j \quad \forall j \\
 & \xi_j \geq 0 \quad \forall j
 \end{aligned}$$

Support Vectors



Margin support vectors

$\xi_j = 0, (\mathbf{w} \cdot \mathbf{x}_j + b) y_j = 1$
 (don't contribute to objective but enforce constraints on solution)

Correctly classified but on margin

Non-margin support vectors

$\xi_j > 0$
 (contribute to both objective and constraints)

$1 > \xi_j > 0$ Correctly classified but inside margin

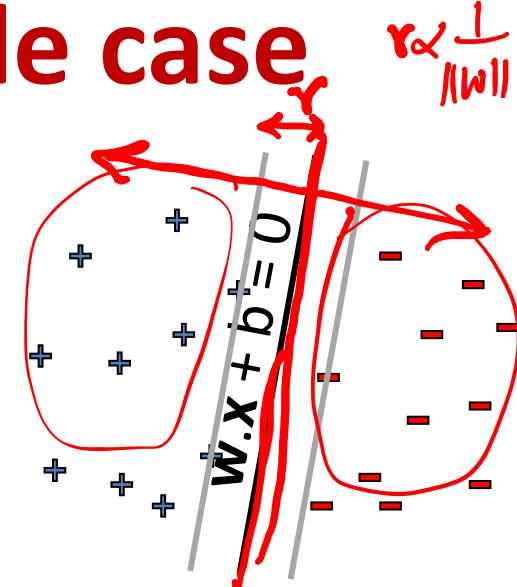
$\xi_j > 1$ Incorrectly classified

SVM – linearly separable case

→ n training points
d features

(x_1, \dots, x_n)
 x_j is a d-dimensional vector

- Primal problem: minimize $\frac{1}{2} w \cdot w$
 $\rightarrow (w \cdot x_j + b) y_j \geq 1, \forall j$



w - weights on features (d-dim problem)

- Convex quadratic program – quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Detour - Constrained Optimization

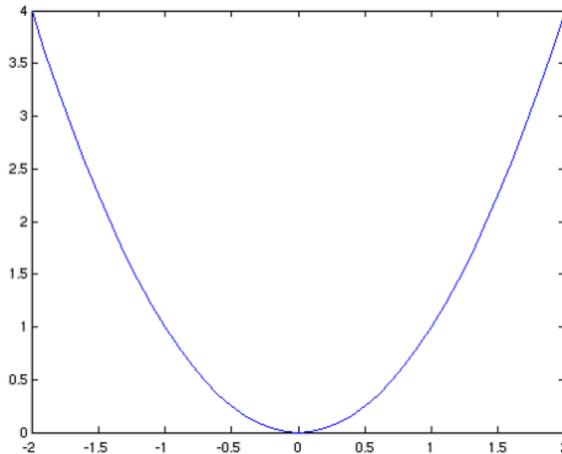
quadratic objective
→

linear
constraint →

$$\begin{aligned} \min_x \quad & x^2 \\ \text{s.t.} \quad & x \geq b \end{aligned}$$

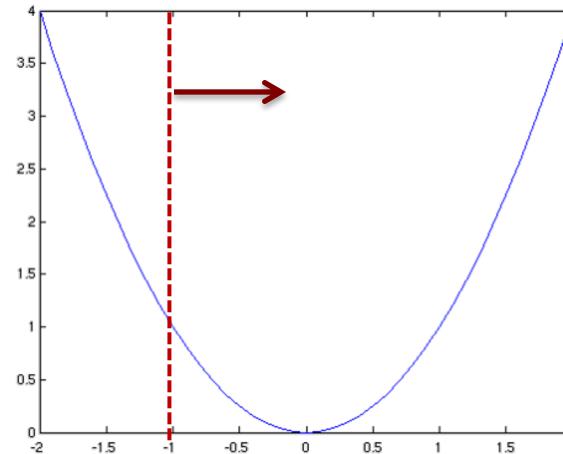
$$x^* = \max(b, 0)$$

$$\min_x \quad x^2$$



$$x^* = 0$$

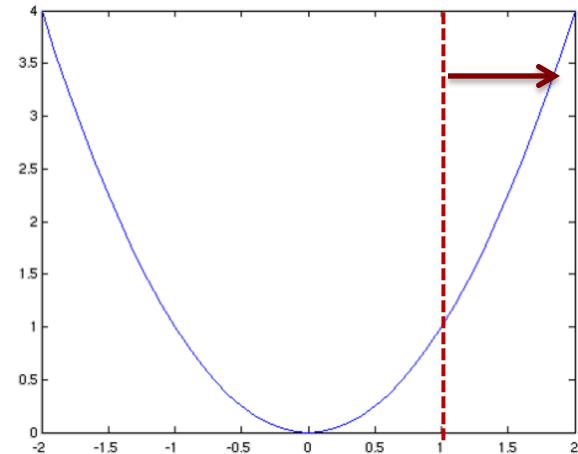
$$\begin{aligned} \min_x \quad & x^2 \\ \text{s.t.} \quad & x \geq -1 \end{aligned}$$



$$x^* = 0$$

Constraint inactive

$$\begin{aligned} \min_x \quad & x^2 \\ \text{s.t.} \quad & x \geq 1 \end{aligned}$$

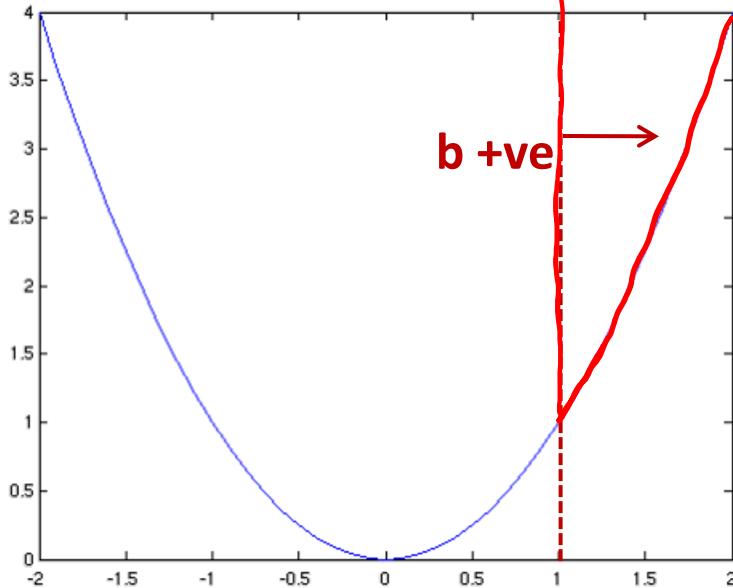
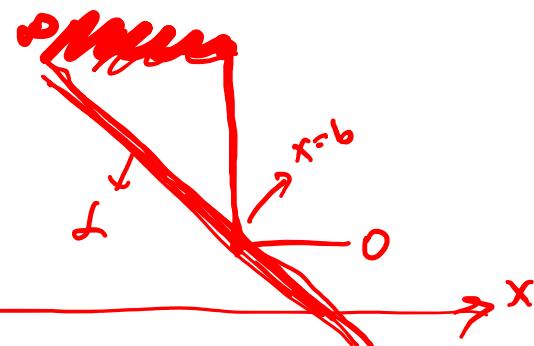


$$x^* = 1$$

Constraint active
(tight)

Constrained Optimization

Goal



$$\begin{aligned} & \min_x x^2 \\ \text{s.t. } & x \geq b \end{aligned}$$

Equivalent unconstrained optimization:
 $\min_x x^2 + I(x-b)$

$$I(x-b) = \begin{cases} \infty & x < b \\ 0 & x \geq b \end{cases}$$

Replace with lower bound ($\alpha \geq 0$)

$$x^2 + I(x-b) \geq \underbrace{x^2 - \alpha(x-b)}_{\text{LHS}} \quad \underbrace{\max_{L \geq 0} L(x, \alpha)}_{\text{RHS}}$$

Primal and Dual Problems

Primal problem: $p^* = \min_x x^2$
s.t. $x \geq b$

Dual problem: $d^* = \max_{\alpha} \boxed{d(\alpha)}$

$\Leftrightarrow \begin{cases} \geq 0 \\ \geq \end{cases}$

s.t. $\alpha \geq 0$

$$= \min_x \max_{\alpha \geq 0} L(x, \alpha)$$

$$\leftarrow = \max_{\alpha} \min_x L(x, \alpha)$$

s.t. $\alpha \geq 0$

where Lagrangian $L(x, \dot{x}, \alpha) = x^2 - \alpha(x-b) - b$

How to form the Lagrangian?

$$\lambda \geq 0$$

For each constraint, introduce a positive Lagrange multiplier

Fold constraints into objective

$$+ \min_{x_1, x_2} x_1^2 + x_2^2 \quad \text{s.t. } x_1 \geq b_1 \quad d_1 \geq 0 \\ x_2 \geq b_2 \quad d_2 \geq 0$$

$$x^2 - \alpha(x-b)$$

Why solve the Dual problem?

$w, b \quad (d+1) \text{dim}$

Primal problem: $p^* = \min_x x^2$
s.t. $x \geq b$

Dual problem: $d^* = \max_{\alpha} \boxed{d(\alpha)}$
s.t. $\alpha \geq 0$

$$= \underbrace{\min_x}_{\alpha \geq 0} \max L(x, \alpha)$$

$$= \max_{\alpha} \underbrace{\min_x}_{\alpha \geq 0} L(x, \alpha)$$

- Dual problem (maximization) is always concave even if primal is not convex

Why? Pointwise infimum of concave functions is concave. ✓
[Pointwise supremum of convex functions is convex.] ✓

$$L(x, \alpha) = x^2 - \alpha(x - b) \quad \leftarrow$$

- As many dual variables α as constraints, helpful if fewer constraints than dimension of primal variable x ✓

Connection between Primal and Dual

Primal problem: $p^* = \min_x x^2$
s.t. $x \geq b$

Dual problem: $d^* = \max_{\alpha} d(\alpha)$
s.t. $\alpha \geq 0$

➤ **Weak duality:** The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \leq p^*$

To see this, recall $L(x, \alpha) = x^2 - \alpha(x - b)$ ↵

For every feasible x' (i.e. $x' \geq b$) and feasible α' (i.e. $\alpha' \geq 0$), notice that

$$d(\alpha) = \min_x L(x, \alpha) \leq x'^2 - \alpha'(x' - b) \leq x'^2$$

Since above holds true for every feasible x' , we have $d(\alpha) \leq x'^2 = p^*$

Connection between Primal and Dual

$$\begin{array}{c} x^* \\ \downarrow \\ \text{Primal problem: } p^* = \min_x x^2 \\ \text{s.t. } x \geq b \end{array} \quad \checkmark$$

$$\begin{array}{c} \alpha^* \\ \downarrow \\ \text{Dual problem: } d^* = \max_{\alpha} d(\alpha) \\ \text{s.t. } \alpha \geq 0 \end{array} \quad \checkmark$$

➤ **Weak duality:** The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \leq p^*$ \checkmark

➤ **Strong duality:** $d^* = p^*$ holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

$$\begin{array}{ccc} \text{primal variables} & & \text{dual variables} \\ w^*, b^* & \longleftrightarrow & \alpha_1^*, \dots, \alpha_n^* \end{array}$$

SVM

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

$$\min_x \max_{\alpha} L(x, \alpha) \quad \max_{\alpha} \min_x L(x, \alpha)$$

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero. ✓
- 2. $x^* \geq b$ i.e. x^* is primal feasible ✓
- 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible ✓
- 4. $\alpha^*(x^* - b) = 0$ (called as complementary slackness)
and const \leftarrow primal constraint

$$\begin{aligned} \alpha &\geq 0 & \checkmark \\ x &\geq b & \checkmark \\ \max_{\alpha} & \text{L}(x, \alpha) \\ \text{st. } & (w_i x_i + b) y_i \geq 1 \end{aligned}$$

We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Primal and Dual Problems

$$\text{Primal problem: } p^* = \min_x \underbrace{x^2}_{\text{s.t. } x \geq b}$$

$$= \min_x \max_{\alpha \geq 0} L(x, \alpha)$$

$$\text{Dual problem: } d^* = \max_{\alpha} \underbrace{d(\alpha)}_{\text{s.t. } \alpha \geq 0}$$

$$= \max_{\alpha} \underbrace{\min_x L(x, \alpha)}_{d(\alpha)}$$

where Lagrangian $L(x, \alpha) = \underbrace{x^2 - \alpha(x - b)}_{}$

How to form the Lagrangian?

For each constraint, introduce a positive Lagrange multiplier
Fold constraints into objective

Dual SVM – linearly separable case

n training points, d features

$(\mathbf{x}_1, \dots, \mathbf{x}_n)$ where \mathbf{x}_i is a d -dimensional vector

- Primal problem: $\underset{\substack{\mathbf{w}, b}}{\text{minimize}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w}$

$$(\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1, \quad \forall j=1,..,n$$

$$\mathbf{w}, b \geq 0$$

w - weights on features (d-dim problem)

- Dual problem (derivation):
$$\max_{\alpha} d(\alpha) = \min_{w, b} L(w, b, \alpha)$$

α - weights on training pts (n-dim problem)

Dual SVM – linearly separable case

- Dual problem:

$$\max_{\alpha} \underbrace{\min_{w,b} L(w,b,\alpha)}_{\alpha_j \geq 0, \forall j} = \frac{1}{2} w \cdot w - \sum_j \alpha_j [(w \cdot x_j + b) y_j - 1]$$

$$\frac{\partial L}{\partial w} = w - \sum_j \alpha_j x_j y_j = 0$$

$$\frac{\partial L}{\partial w} = 0 \quad \Rightarrow \underbrace{w}_{\text{If we can solve for } \alpha \text{ as (dual problem),}} = \sum_j \underbrace{\alpha_j y_j}_{\text{then we have a}} \underbrace{x_j}_{\text{solution for } w \text{ (primal problem)}} \quad \checkmark$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \sum_j \alpha_j y_j = 0 \quad \checkmark$$

$$\frac{\partial L}{\partial b} = \sum_j \alpha_j y_j = 0$$

Dual SVM – linearly separable case

- Dual problem:

$$\max_{\alpha} \min_{w, b} L(w, b, \alpha) = \underbrace{\frac{1}{2} w \cdot w - \sum_j \alpha_j}_{d(\alpha)} \left[(w \cdot x_j + b) y_j - 1 \right]$$
$$\alpha_j \geq 0, \forall j$$

$$\Rightarrow \underbrace{w}_{-} = \sum_j \alpha_j y_j x_j \quad \cancel{\Rightarrow} \quad \Rightarrow \sum_j \alpha_j y_j = 0 \quad \cancel{\cancel{\cancel{\Rightarrow}}}$$

$$\begin{aligned} L(\underbrace{w^*, b^*, \alpha^*}_{\cancel{\cancel{\cancel{\Rightarrow}}}}) &= \frac{1}{2} \sum_j \alpha_j y_j x_j \cdot \sum_i \alpha_i y_i x_i - \sum_j \alpha_j \left[\sum_i \alpha_i y_i x_i \cdot x_j + b \right] y_j - 1 \end{aligned}$$
$$\begin{aligned} &= \underbrace{\frac{1}{2} \sum_j \alpha_j y_j x_j \cdot \sum_i \alpha_i y_i x_i}_{\cancel{\cancel{\cancel{\Rightarrow}}}} - \underbrace{\sum_i \alpha_i x_i y_i}_{\cancel{\cancel{\cancel{\Rightarrow}}}} \cdot \underbrace{\sum_j \alpha_j y_j x_j}_{\cancel{\cancel{\cancel{\Rightarrow}}}} - b \sum_j \alpha_j y_j \cancel{\cancel{\cancel{\Rightarrow}}} \end{aligned}$$
$$\begin{aligned} &= -\frac{1}{2} \sum_i \alpha_i y_i x_i \cdot \sum_j \alpha_j y_j x_j + \sum_j \alpha_j = \underline{d(\alpha)} \end{aligned}$$

Dual SVM – linearly separable case

$$\underset{\alpha_1 \dots \alpha_n}{\text{maximize}} \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$
$$\sum_i \alpha_i y_i = 0$$
$$\alpha_i \geq 0$$

Dual problem is also QP
^{n-dim}

Solution gives α_j s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

What about b ?

Dual SVM: Sparsity of dual solution

