Support Vector Machines
(SVMs)
contd...

Aarti Singh

Machine Learning 10-315
Mar 23, 2022

ACHI




Hard-margin SVM

Data perfectly separable by a

linear decision boundary min w.w
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Hard margin approach



Soft-margin SVM

Allow “error” in classification

Soft margin approach

min wW.w + CZE
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s.t. (w.x+b) y; 2 1-§ V|
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§ - “slack” variables
= (>1 if x; misclassifed)
pay linear penalty if mistake
C - tradeoff parameter (chosen by
cross-validation)
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Slack variables — Hinge loss

Notice that

§=1—(w-z; +b)y;))+

Hinge loss




Slack variables — Hinge loss

=1 —(w-z; +b)y;))+

Hinge loss

0-1 loss
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Regularized hinge loss

min w.w + C2¢
W,b,{gj} J

s.t. (w.x+b) y; 2 1-§ V|
20 V]

& rlep wW.W + C jZ(l—(w.xj+b)yj)+



min ww+C2 EJ-
w)b/{aj}

st.(wxth)y21-§ Vi Support Vectors
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Margin support vectors
=0, (wx+b)y,=1

(don’t contribute to objective
but enforce constraints on
solution)

Correctly classified but on
margin

Non-margin support

vectors

§>0

(contribute to both objective
and constraints)

1>¢ >0 Correctly classified
but inside margin

& > 1 Incorrectly classified
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SVM - linearly separable case, *,;

—> n training points (X1, o) Xp,) &
d features X; is a d-dimensional vector

 Primal problem: minimizr %w.w o~

w - weights on features (d-dim problem)

e

* Convex quadratic program — quadratic objective, linear
constraints

* But expensive to solve if d is very large
e Often solved in dual form (n-dim problem)



Detour - Constrained Optimization
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Constraint inactive

r* = max(b,0)
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Constraint active
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Constrained Optimization

/] min, z2

Equivalent unconstrained optimization:
min, x? + (x-b)
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Replace with lower bound (o >= 0)

x>+ 1(x-b) >= x*-alxb) _-
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Primal and Dual Problems

Primal problem: p* = min, z2 « Dual problem: d* = maxa&'dgaﬂ

St. z>bv ©L2° s.t. >0
E 4 i
- minmax L(z,a) 44— = maxqming L(z, )
a2 S——t s.t. «
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where Lagrangian L {&¥ed) = 2‘5“—9‘&@{5‘)—%)

How to form the Lagrangian? AL =0
For each constraint, introduce a positive Lagrange multiplier
Fold constraints into objective 1
x — oL (x-b
o XT*\'X;/ sk Ay by oy 79 )
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Why solve the Dual problem?

Wil ()
Primal problem: p* = min, z2 Dual problem: d* = maXg
st. z>b st. a>0
. - 2
- minmax L(xz, a) = Maxq Ming L(z, o)
x a>0 S
- — s.t. >0

» Dual problem (maximization) is always concave even if
primal is not convex

Why? Pointwise infimum of concave functions is concave. -
[Pointwise supremum of convex functions is convex.] -

L(z,a) =22 —al(z —b)

» As many dual variables o as constraints, helpful if fewer .-
constraints than dimension of primal variable x 12



Connection between Primal and Dual

Primal problem: p* = min, z2 Dual problem: d*= max, d(o)
- st. z>0b s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

- -

To see this, recall [(z,a) = 22 — a(z — b) &

For every feasible x’ (i.e. x’ 2 b) and feasible o’ (i.e. a’ > 0) , notice

that - P —
d(a) = Mming L(x, ) £ x2—a’(x'-b) < x’2
— \ ___ — N —— qu—
L(x\&D

Since above holds true for every feasible x’, we have d(a) < x*2 = p*
[— —-,—‘
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Connection between Primal and Dual

X <
J v )
Primal problem: p* = min, z2 Dual problem: d* = max, d(o)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e.d* < p* -

» Strong duality: d* = p* holds often for many problems of

interest e.g. if the primal is a feasible convex objective with linear
__#

constraints <
— ey SVM
prd cosiotles dud v atles
\3|\°¥ Q—7 0{1, . °L:\
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Connection between Primal and Dual

What does strong duality say about a* (the a that achieved optimal value of
dual) and z* (the x that achieves optimal value of primal problem)?

.n x' \
e e LIx4) Pex min L(xe2)

Whenever strong duality holds, the following conditions (known as KKT con-

ditions) are true for o* and x*:
— - —

o 1. yL(z*,a*) =0 i.e. Gradient of Lagrangian at x* and o* is zero. v~

e 2. z* >bie. z*is primal feasible ™™ e LI
e 3. o >0ie. " is dual feasible xZ2b

YNAr W\’\’\‘L
e 4. a(x* —b) =0 (called as complementary slackness) of. Qorith 3y, 2)

heasd ng_ N ?{\MIJ‘ condYounk e aE——

We use the first one to relate * and a*. We use the last one (complimentary
slackness) to argue that o = 0 if constraint is inactive and a* > 0 if constraint

is active and tight. .



Primal and Dual Problems

-

Primal problem: p* = min, z2 ] Dual problem: d* = max, d(a)

st. x>0 s.t. >0
Ae)
= minmaXL(a:,a)J - maxa Ming L(zx, o)
r >0
— s.t. >0

where Lagrangian L(x, o) = 2 — a(x — b)
= —ee———————— )

How to form the Lagrangian?
For each constraint, introduce a positive Lagrange multiplier
Fold constraints into objective
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Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
* Primal problem: minimiz %w.w
(WX +0b)y; > Vizl,.-n ofy .. oln V€

w - weights on features (d-dim problem)

* Dual problem (derivation): o Al = m L(w,.4)
L |
L(Wb()é)_QWW > ]KWXJ—I—b)y]—l} —
j =20, vy — = = —

o - weights on training pts (n-dim problem)
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Dual SVM - linearly separable case

* Dual problem:

MaXeq minw’b L(w,b,a) = %W.W — 2. [(W.Xj -+ b) Yj — 1}

> ' 4« e
a; >0, V) )

ol . W-ZdiXjyy =°
I\ J
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8— — () = W — Z Oé]ij] ./If we can solve for
w L= j = os (dual problem),
5 then we have a
L lution f
°L _ 0 — oy — O o solutionforw
ob Z 7Y (primal problem)

— JL _ %&'3'70
b - 3 9

18



Dual SVM - linearly separable case

* Dual problem:

MaXq MiNy , L(W,b,a0) = %W.W — 2. [(W.Xj -+ b) Yj — 1}
~— _———
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Dual SVM - linearly separable case

. 1
Maximizea ;i — 5 2.4 j Q0 YiY XX —

ol|—— A'\
e 204y =0 -
87 Z O
n~dim
Dual problem is also QP

Solution gives as

W — Z O Y;X; &

(2

What about b?
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Dual SVM: Sparsity of dual solution
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Complementary

slackness implies

Only few ays can be
non-zero : where
constraint is active and

tight
(w.x; + bly,=1 o
(W-#5 £6DY5 > |

Support vectors —
training points j whose

oS are non-zero





