Boosting

Can we make dumb learners smart?

Aarti Singh

Machine Learning 10-315
Mar 2, 2022

Slides Courtesy: Carlos Guestrin, Freund & Schapire

ACHI

Why boost weak learners?

Goal: Classify movie review sentiment

“I'm a fan of TV movies in general and this was one of the good

ones” 4

“Long, boring. Never have | been so glad to see ending credits
roll”

“I don’t know why | Ii_l(_g this movie, but | never get tired.”

* Easy to find “rules of thumb” that are better than random
chance.

E.g. If ‘good’ occurs in utterance, then predict ‘positive’

* Hard to find single highly accurate prediction rule.
e.g. “This movie is terrible but it has some good effects”

2

Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners e.g., naive Bayes, logistic
regression, decision stumps (or shallow decision trees)

N3
Are good © - don’t usually overfit - Lo
Are bad ® - can’t solve hard learning problems

 Can we make weak learners good??? 3

Voting (Ensemble Methods)

* Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

* Output class: (Weighted) vote of each classifier A
— Classifiers that are most “sure” will vote with more conviction ¥ ¢~
— Classifiers will be most “sure” about a particular part of the space "= hy
— On average, do better than single classifier!

H: X = Y (-1,1)

h1(X) NS hz(X —
~ - = hi(X)+h2(X) &~

X) = sign Zat ht(X))

e e 571
weights ,

Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

But how do you ???
— force classifiers h, to learn about different parts of the input
space?
— weigh the votes of different classifiers? o,

Boosting [Schapire’89]

Idea: given a weak learner, run it multiple times on (reweighted)
. . . . ‘“
training data, then let learned classifiers vote

On each iteration t:

— weight!Dt(i)ifor each training example i, based on how
incorrectly it was classified -

— Learn a weak hypothesis — h, 90*‘"‘ . P‘d,da—

CEm—

— A weight for this hypothesis —|a.,

Final classifier: | H(x) = sign(ZO}St (X))
\

Practically useful
Theoretically interesting

Learning from weighted data

* Consider a weighted dataset

. \
— D(i) — weight of i th training example (x',y') -
— Interpretations:
* ith training example counts as D(i) examples

* If | were to “resample” data, | would get more samples of “heavier”
data points

* Now, in all calculations, whenever used, i th training example
counts as D(i) “examples”

— e.g., in MLE redefine Count(Y=y) to be weighted count

Unweighted data Weights D(i)
Count(Y=y) = 5 1(Y '=y) Count(Y=y) = 5 D(i)1(Y i=y)
I = o i =1

1 L — 7

AdaBoost [Freund & Schapire’95]

Given: (z1,¥1),-- (ym) Where z; € X, y; € Y = {—1 -l—l}
Initialize Dl() =1/m. it ally equal weights
Fort =1,.
W——/
e Trainweak learner using distribution D;. Naive bayes, decision stump
e Getweak classifier h; : X — R. ,
e Choose a; € R. pgaﬁ ' Upcoft Pt
L

Update:
Dy () = 2l) e 1Ty = he(z;) " %
tighlE Y et if y; & hy(x;) v
W?‘““n - [ight
Dy (3) exp(—auyihe(zi)) oo oSt
= — —~ if wrong on pti
Zt l , yiht(xi) =-1<0
Y: f\J&)
where Z; is a normalization factor A\ ‘:

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

Train weak learner using distribution D;. Naive bayes, decision stump

Get weak classifier hy : X — R.
Update:

Dy(7) exp(—ay;hi(z;))

Diy1(2) =

—_—

Zy

where Z; is a normalization factor

Zo= 3" Ds(i) exp(—asyshe()
1=1

Increase weight
if wrong on pt i
yiht(xi) =-1<0

Weights for all
pts must sumto 1

% Dt+1(i) =1

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

e Trainweak learner using distribution D;. Naive bayes, decision stump
e Getweak classifier hy : X — R.
e Choose ot € R. Magic (+ve)

e Update: v Increase weight
Dy(1) exp(—auyihi(zi)) i wrong on pti

Z yi ht(xi) =-1< 0

Diy1(2) =

where Z; is a normalization factor

Output the final classifier:

g
H(z) = sign (Z c\t/tht(a:)) :

i=]1 =

What «, to choose for hypothesis A,?

Weight Update Rule: Dyy1(3) = Dy(7) exp(gat%‘ht(mz‘))
t

_.§~ oy = %]n (1 _ Gt) [Freund & Schapire’95]

€t
Weighted training error ﬂ\—h{m)# ¥y
et = Pyp,(iylhe(x") al y' = Z D)3 (hi(a;) # yz)
— —1 ‘- |

Does ht get it" point wrong

= 0 if h, perfectly classifies all weighted data pts o =
g = 1if hy perfectly wrong => -h, perfectly right oy = -
=0.5 o = 0

D 1

Ya-

+
+_|__
+ = -
+ o
%X
@ _
@v

[)2

Boosting Example (Decision Stumps)

[)3 +

Boosting Example (Decnsnon Stumps)

O(‘-ltnl-’{ \/

L 15 e oy
—I- j] X le
0

+ _ %7)(_1_6 +Zx’°
; \

— (L

;_ —I_ /ol\

le
+ © o
+
@ -

» What's the error on the weighted training dat%, €57

Boosting Example (Decision Stumps)

h
4

€1=0.30

0042

[)2

h
£5=021_ 2
(X2:O65 /

Boosting Example (Decision Stumps)

=

H_
final

= \1gn<4|

15

Analysis for Boosting

j(/h R+

* Choice of &, and hypothesis /4, obtained by coordinate descent on exp
loss (convex upper bound on 0/1 loss)

0/1 loss

exp loss
-

f(z) =) athi(z); H(z) = sign(f(z))
t —

e S e

1 m 1 m
— S B(H(w) #y) < — Y exp(—yif (7))
m i=1 — — m i=1 - a—
0/1 loss exp loss
— —

Y L)

16

Analysis for Boosting

Analysis reveals:

* If each weak learner A, is slightly better than random guessing (g,< 0.5),

then training error of AdaBoost decays exponentially fast in number of
rounds T.

Ui T
i Z O0(H(x;) = y;) < €exp (_2 Z (1/2 — Et)2>
daining Error

What about test error?

17

Boosting results — Digit recognition
[Schapire, 1989]

Te b uar

Test Error

- Training Error T
10 100 1000
rounds
>

* Boosting often,
— Robust to overfitting
— Test set error decreases even after training error is zero

* |f classes are well-separated, subsequent weak learners agree and hence more
rounds does not necessarily imply that final classifier is getting more complex.

18

AdaBoost and Won Tl‘@_@t) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]

/ N——— | SN——
. 30 :

v w Train w 1€St 2= p Train R\ pe TSt
12- \
10

1 10 100

sonal sonar

15

_\/C.)ve}fits\
) —- “\

<
20- N
/s \K

/ .
Overfits
5—

| 10 100 1000 | 10 100 1000

nnsphere

5

0-
| 10

Boosting can overfit if classes not well T T
separated (high label noise) or weak learners are too complex.

19

Boosting and Logistic Regression

-1 _ ___L/ g
? (=2 %)= +expl§ 6D

Logistic regression assumes:

1 7
/O P(Y =1|1X) = f(x)zwo-l-Zw-x-
(X) =1 + exp(f(x)) 7
And tries to maximize data likelihood: Omff'b”"“
id T 1
P(D|f) =]]

i—1 1L+ exp(—yif(z)

N N

Equivalent to minimizing log loss

———

—log P(D|f) = i IN(1 + exp(—y;f(x;)))&
p i=1

—

—

20

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

— Y I+ exp(—yif (:))) flo) =wo+) wjz;

i=1
Boosting minimizes similar loss function!!

- % > exp(—y;f(z;)) fx) =) ah(x)
i=1 — ;=

Weighted average of weak learners

exp loss Both smooth and convex

approximations of 0/1 loss!
0/1 loss

0 f(z;) 3

Boosting and Logistic Regression

Logistic regression:

Minimize log loss

S In(1 + exp(—yif(z))

i=1
Define

f(x) = Z W;T
,_7 -

where x; predefined
features

(linear classifier)

Jointly optimize over all
weights wo, wi, wa...

Boosting:
* Minimize exp loss

> exp(—yif(x;))
i=1
 Define
flx) = zt:oztht(w)

where /,(x) defined dynamically

to fit data
(not a linear classifier)

* Weights o, learned per iteration

t incrementally
22

Hard & Soft Decision

Weighted average of weak leamers f(z) = > azhi(x)

t
ND—C_

Hard Decision/Predicted label: H(x) = sign(f(x))

Soft Decision: P(Y =1|X) = 1
(based on analogy with 1+ exp(f(x))
logistic regression) —

23

File Tools Desktop Tree Window Help ~
B & M
w S NS
Matlab example Click to display: | Identiy *| magnification: | 100% + | Pruning level: [0 of8 $
e [) X5 < 0.23154 LA%5 >=0.23154
- decision tree
< 0.02313 /205 >=0.02313 X27 < 099993 L0027 >= 0.999945
X3 0.14081 A0 & WORBE1 LoxT0 >= 0.74981 X1 < U54A\X1 >=0.5
. X16 <-0.90517 Jax16 >= -0.90517 : < 0.93671 J\X7 >=0.93671
load ionosphere e
(0]
A) UCI dataSEt X3 < 0.369335 /XXX34 @. FIBFEE5 pAx24 >= 0. 987455 X8 0.70588 A\XEB >=0.7¢
% 34 features, 351 samples
— s X12< 0117495 %4\ X12 >= -0.117495
% binary classification
X9 < 0277955 /29 >=0.27795§
rng(100)
x12 0.12187x12>:-0.‘|2‘|87

%Default MinLeafSize = 1
tc = fitctree(X,Y);

cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph’)

Validation error = 0.1254

[
kfoldLoss(cvmodel) ”

Matlab example
- decision tree

load ionosphere

% UCI dataset

% 34 features, 351 samples
% binary classification
rng(100)

%Defg_gl_t MinLeafSize = 1

File Tools Desktop Tree Window Help ~
OO L
S N NS
R N n -
Click to display: | Identiy + | mMagnification: | 100% + | Pruning level: |0 of7 -
X5 < 0.145975 L5 >=0.145375
X27 < 0.999214327 >= 0.99921
X8 <-0.53701 L8 S=-0.53701 X1 <USAX >=0.5

X14 < 0.26643 /29

4 >=0.26643

X5 < 041807523%5 >=0.418075

X4 < 0.61343 (x4 >=0.61343y

X4 < -0.077075 fXX4 >=-0.07707y

X17 < 0.199705 ZLX17 >= 0.1397034

tc = fitctree(X,Y, 'MinLeafSize’,2);
——— =

cvmodel = crossval(tc);

view(cvmodel.Trained{1},'Mode','graph’)

kfoldLoss(cvmodel)

X4 <¢0.080395 j\x4 >=-0.080335

X34 < 0.95098 %4334 >= 0.95098

g X3 <0.73004 2\X3 >=0.73004

X6 < -0.727275 JAX6 >=-0.7§ 275

Validation error = 0.1168

<~

25

§ X22 < 0.47714 %22 >= 0477

File Tools Desktop Tree Window Help ¥

+)

'*‘ﬂ‘)

~ N ."". !

M at I a b exa m p I e Click to display: | |dentity y Magnification: | 100% y Pruning level: |0 of4

“»

— decision tree

load ionosphere

% UCI dataset

% 34 features, 351 samples
% binary classification
rng(100)

%Default MinLeafSize =1
tc = fitctree(X,Y, 'MinLeafSize',10);
cvmodel = crossval(tc);

view(cvmodel.Trained{1},'Mode','graph’)

kfoldLoss(cvmodel)

X5 <0.04144 AAX5>=0.04144

X27 >= 0.993945

X22 < 047714 A\X22 >= 047714

X3 < 04404

X24 <-0.00251 X3 < 0698435 /£x3 >=0.698435

Validation error = 0.1339

\

26

Matlab example - decision trees

fixed # training data

\0.1339

0.1254

Validation error

Training error ~

|

——— -

- | >

underfitting - overfitting Complexity
Model —=
MinLeafSize 10 MinLeafSize 2 MinLeafSize 1
——— 3

—_— PEE——
27

Matlab example - boosting

% UCI dataset

% 34 features, 351 samples
% binary classification

load ionosphere;

rng(2); % For reproducibility

ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
rsLoss = resublLoss(ClassTreeEns,'Mode','Cumulative');
plot(rsLoss,'r");

hold on

ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree’,...
'‘Holdout',0.5);

genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');

plot(genError,'b');

xlabel('Number of Learning Cycles');

legend('Training err', 'Test err')

Matlab example - boostin

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Number of Learning Cycles

Teaining er
__1 -
- Validation error ~ 0.07 |7 .
——
0 1I0 2IO SIO 4I0 5IO 6I0 7IO 8IO 9I0 100

Bagging [Breiman, 19906]

Related approach to combining classifiers:

1. Run independent weak learners on subsampled data (sample with
replacement) from the training set o

2. Average/vote over weak hypotheses

Bagging VS. Boosting
[Resamples data points [Reweights data points (modifies their
distribution)
Weight of each classifier [Weight is dependent on
is the same classifier’s accuracy
[, Only variance reduction Both bias and variance reduced -
/ learning rule becomes more complex
with iterations 30

Boosting Summary

Combine weak classifiers to obtain strong classifier
— Weak classifier — slightly better than random on training data

— Resulting very strong classifier — can eventually provide zero training
error

AdaBoost algorithm

Boosting v. Logistic Regression

— Similar loss functions -

— Single optimization (LR) v. Incrementally improving classification (B)
Most popular application of Boosting:

— Boosted decision stumps!

— Very simple to implement, very effective classifier

31

