

# Decision Trees

Aarti Singh

Machine Learning 10-315

Feb 28 , 2022



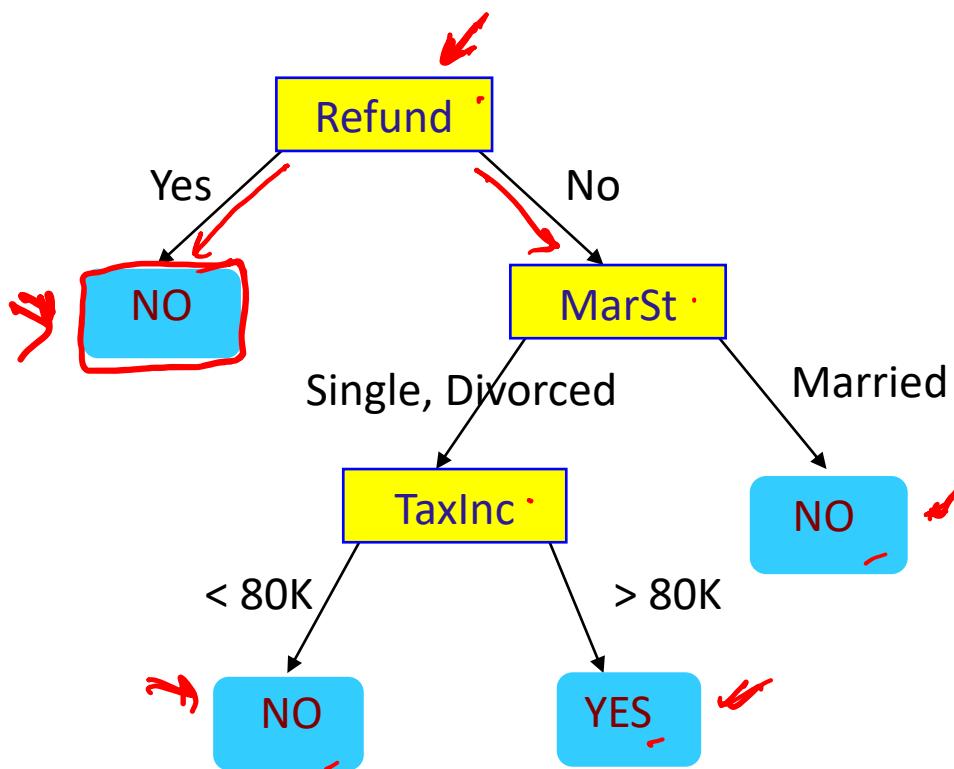
MACHINE LEARNING DEPARTMENT



# Decision Trees

- Another nonparametric method
  - Complexity increases with more data –
  - No fixed set of parameters –
- Start with discrete features, then discuss continuous
- What does a decision tree represent?

# Decision Tree for Tax Fraud Detection



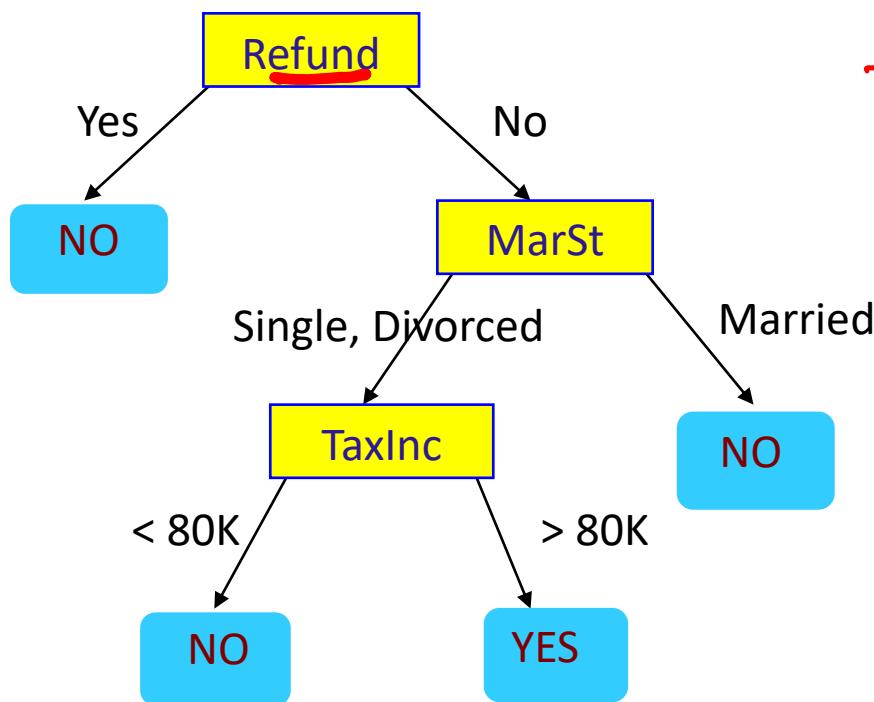
|                | $X_1$ | $X_2$ | $X_3$ | $Y$ |
|----------------|-------|-------|-------|-----|
| Refund         |       |       |       |     |
| Marital Status |       |       |       |     |
| Taxable Income |       |       |       |     |
| Cheat          |       |       |       |     |

- Each internal node: test one feature  $X_i$
- Each branch from a node: selects some value for  $X_i$
- Each leaf node: prediction for  $Y$

# Prediction

- Given a decision tree, how do we assign label to a test point

# Decision Tree for Tax Fraud Detection

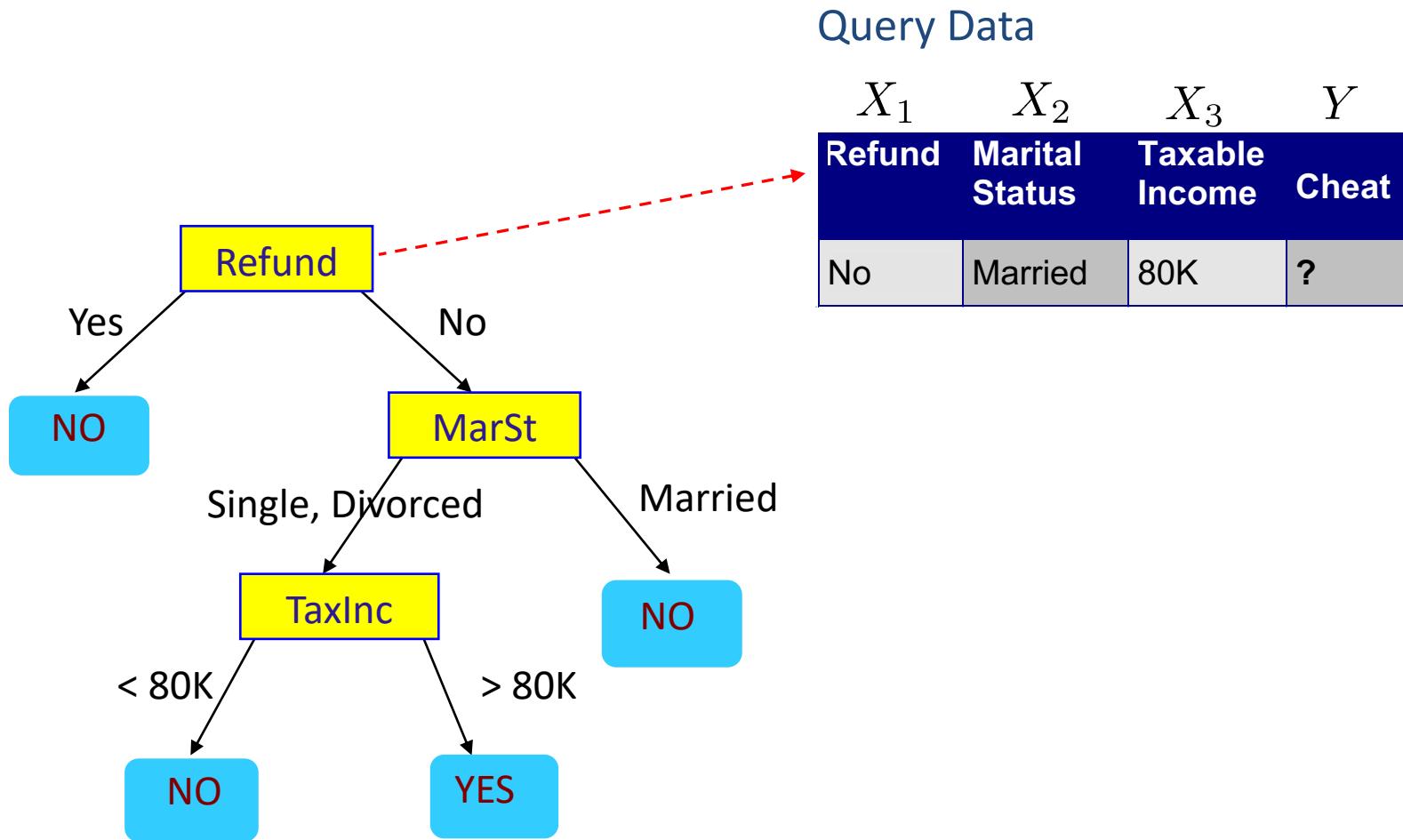


Query Data

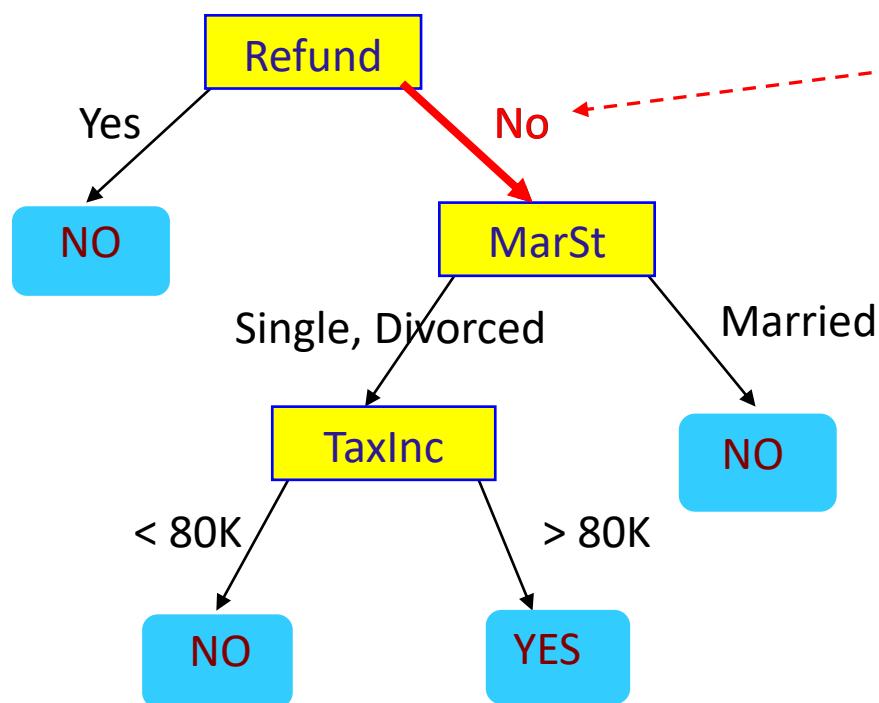
|        | $X_1$ | $X_2$          | $X_3$          | $Y$   |
|--------|-------|----------------|----------------|-------|
| Refund |       | Marital Status | Taxable Income | Cheat |
| No     |       | Married        | 80K            | ?     |



# Decision Tree for Tax Fraud Detection



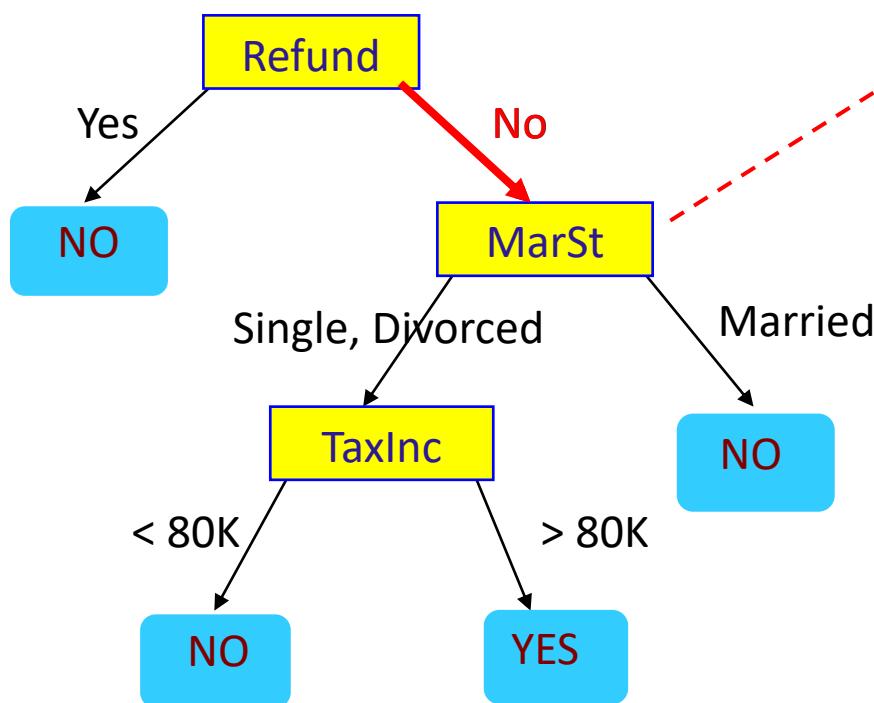
# Decision Tree for Tax Fraud Detection



Query Data

|        | $X_1$   | $X_2$          | $X_3$          | $Y$   |
|--------|---------|----------------|----------------|-------|
| Refund | Refund  | Marital Status | Taxable Income | Cheat |
| No     | Married | 80K            | ?              |       |

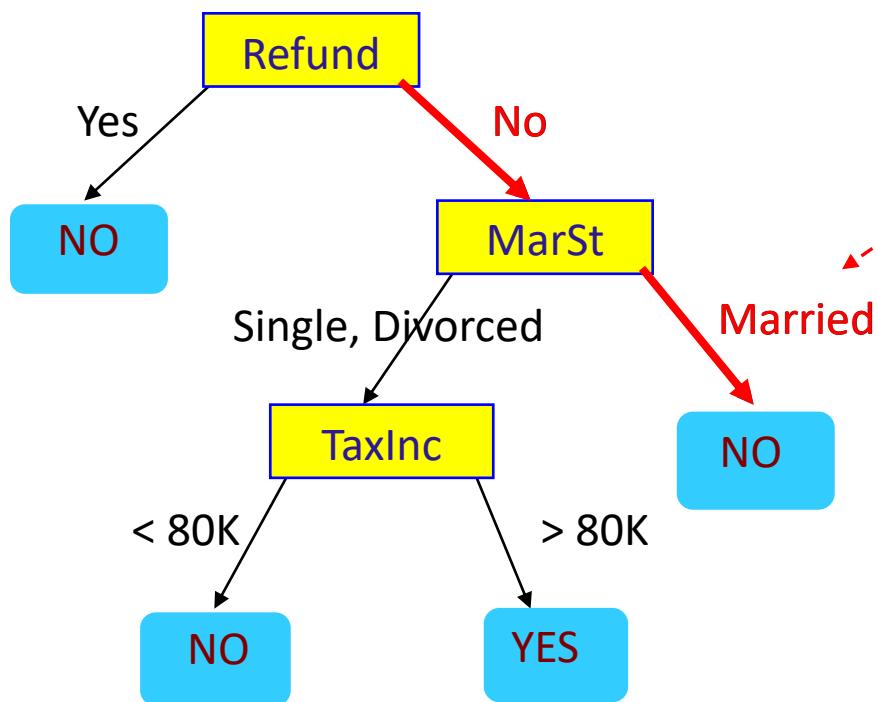
# Decision Tree for Tax Fraud Detection



Query Data

|        | $X_1$   | $X_2$          | $X_3$          | $Y$            |
|--------|---------|----------------|----------------|----------------|
| Refund | No      | Marital Status | Marital Status | Taxable Income |
| ?      | Married | 80K            | ?              | Cheat          |

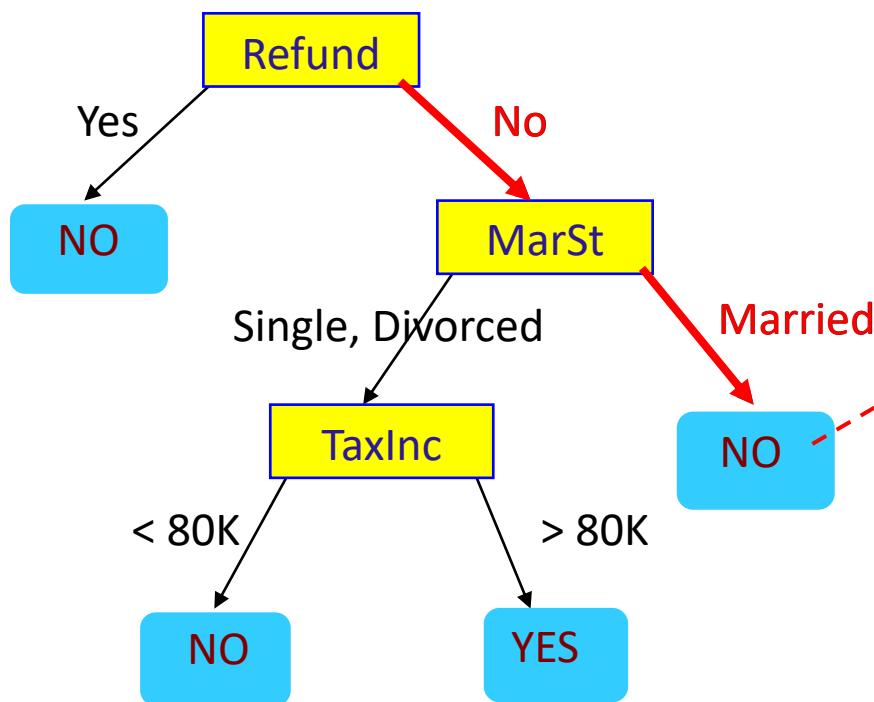
# Decision Tree for Tax Fraud Detection



Query Data

| $X_1$  | $X_2$          | $X_3$          | $Y$   |
|--------|----------------|----------------|-------|
| Refund | Marital Status | Taxable Income | Cheat |
| No     | Married        | 80K            | ?     |

# Decision Tree for Tax Fraud Detection



Query Data

| $X_1$  | $X_2$          | $X_3$          | $Y$   |
|--------|----------------|----------------|-------|
| Refund | Marital Status | Taxable Income | Cheat |
| No     | Married        | 80K            | ?     |

Assign Cheat to "No"

# So far...

- What does a decision tree represent
- Given a decision tree, how do we assign label to a test point

Discriminative or Generative?

# Now ...

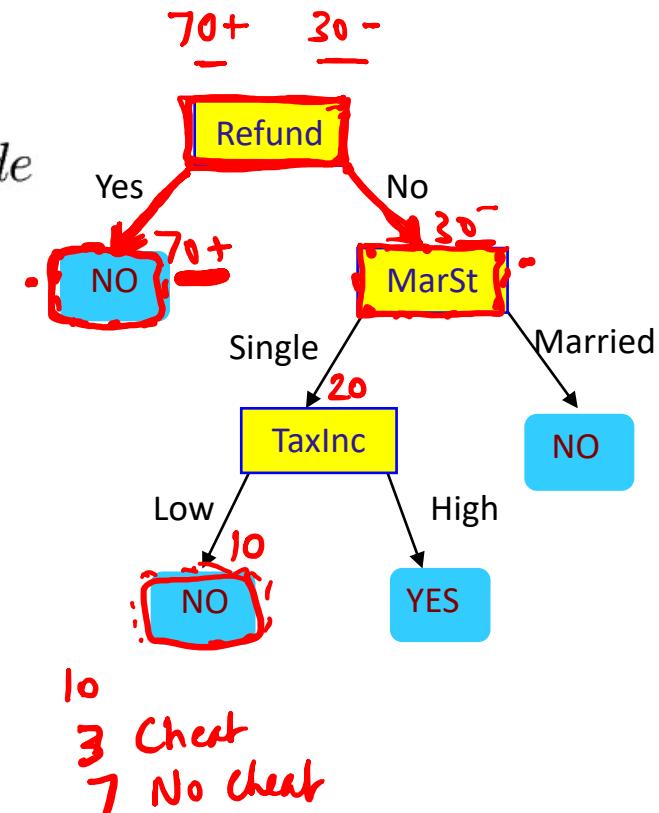
- How do we learn a decision tree from training data

# How to learn a decision tree

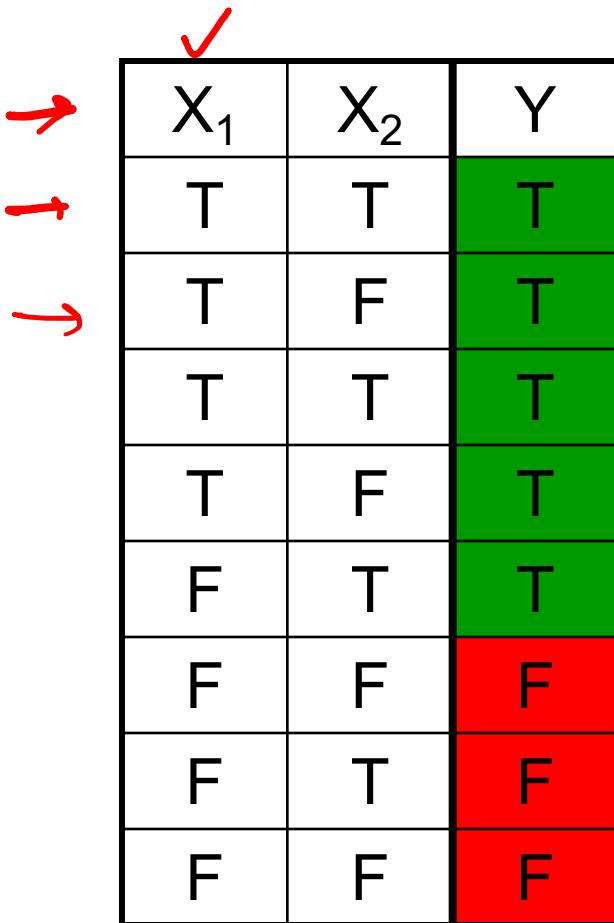
- Top-down induction [ID3]

Main loop:

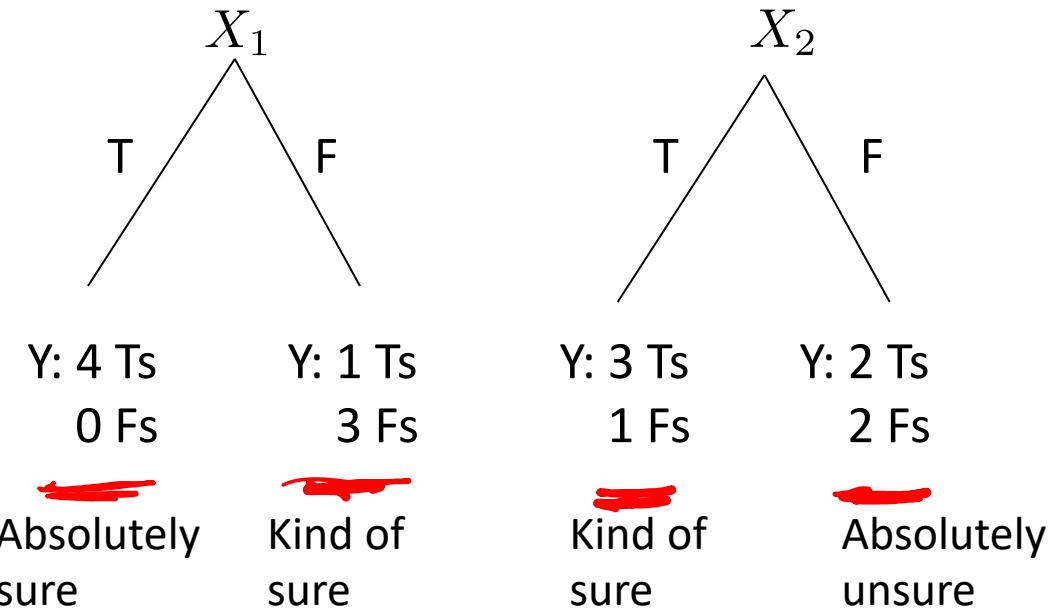
1.  $X \leftarrow$  the “best” decision feature for next *node*
2. Assign  $X$  as decision feature for *node*
3. For each value of  $X$ , create new descendant of *node* (Discrete features)
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
6. When all features exhausted, assign majority label to the leaf node



# Which feature is best?

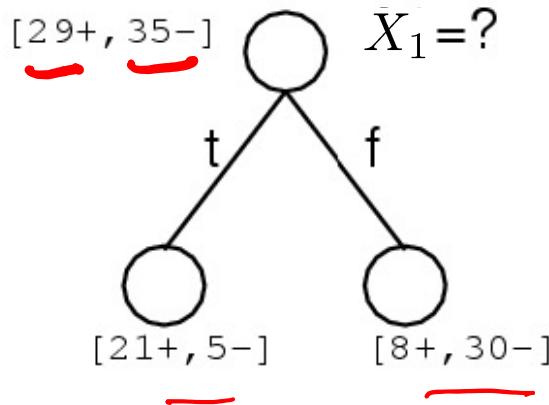
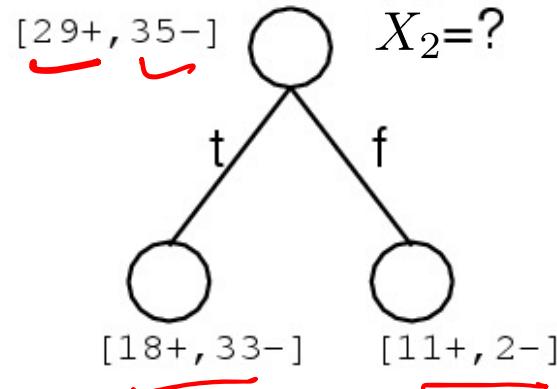


| $X_1$ | $X_2$ | $Y$ |
|-------|-------|-----|
| T     | T     | T   |
| T     | F     | T   |
| T     | T     | T   |
| T     | F     | T   |
| F     | T     | T   |
| F     | F     | F   |
| F     | T     | F   |
| F     | F     | F   |



Good split if we are more certain  
about classification after split –  
Uniform distribution of labels is bad

# Which feature is best?



Pick the attribute/feature which yields maximum information gain:

$$\arg \max_i I(Y, X_i) = \arg \max_i [H(Y) - H(Y|X_i)]$$

$H(Y)$  – entropy of  $Y$      $H(Y|X_i)$  – conditional entropy of  $Y$

# Andrew Moore's Entropy in a Nutshell



Low Entropy

..the values (locations of soup) sampled entirely from within the soup bowl



High Entropy

..the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room

# Entropy

$$E_Y \left[ \log_2 \frac{1}{P(Y)} \right]$$

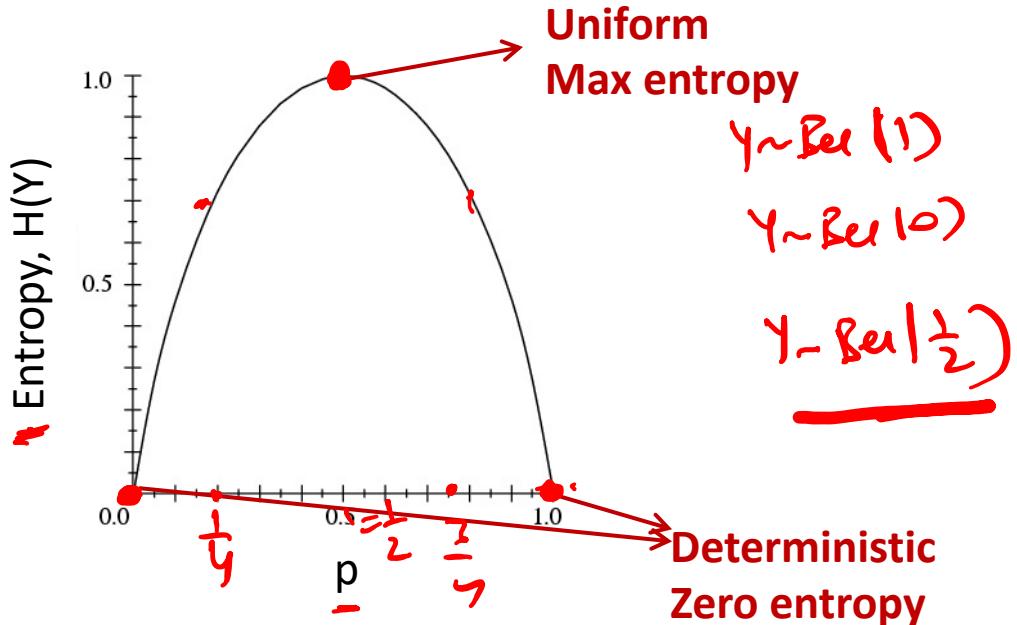
$$-E_Y \left[ \log_2 P(Y|y) \right] \text{ bits}$$

- Entropy of a random variable  $Y$

$$H(Y) = - \sum_y P(Y = y) \log_2 P(Y = y)$$

**More uncertainty,  
more entropy!**

$Y \sim \text{Bernoulli}(p)$



# Information Theory interpretation

Entropy:  $H(Y) = H(P)$  is the expected number of bits needed to encode a randomly drawn value of  $Y \sim P$  under most efficient code optimized for distribution  $P$

$$\mathbb{E}_Y \left[ \underbrace{\log \frac{1}{P(Y)}} \right]$$

$$Y = \{a, b, c, \dots, z\} =$$

$$p(a) > p(z)$$

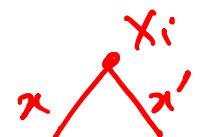
$$\overline{\log \frac{1}{p(a)}} < \overline{\log \frac{1}{p(z)}}$$

Cross-Entropy:  $H(P, Q)$  is the expected number of bits needed to encode a randomly drawn value of  $Y \sim P$  under most efficient code optimized for distribution  $Q$

# Information Gain

- Advantage of attribute = decrease in uncertainty
  - Entropy of Y before split

$$H(Y) = - \sum_y P(Y = y) \log_2 P(Y = y)$$



- Entropy of Y after splitting based on  $X_i$ 
  - Weight by probability of following each branch

$$\begin{aligned} \underline{H(Y | X_i)} &= \sum_x P(X_i = x) \underline{H(Y | X_i = x)} = \cancel{E_x [H(Y | x)]} \\ &= - \sum_x P(X_i = x) \sum_y P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x) \end{aligned}$$

- Information gain is difference

$$I(Y, X_i) = \cancel{H(Y)} - H(Y | X_i)$$

Max Information gain = min conditional entropy

# Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

$$\begin{aligned}\arg \max_i I(Y, X_i) &= \arg \max_i [H(Y) - \underline{H(Y|X_i)}] \\ &= \arg \min_i \underline{H(Y|X_i)}\end{aligned}$$

Entropy of Y  $H(\underline{Y}) = - \sum_y P(Y = y) \log_2 P(Y = y)$  ↗

Conditional entropy of Y  $H(Y | \underline{X_i}) = \sum_x P(X_i = x) H(Y | X_i = x)$

Feature which yields maximum reduction in entropy (uncertainty)  
provides maximum information about Y

$$\underline{H(Y|X_1)} \geq \underline{H(Y|X_2)}$$

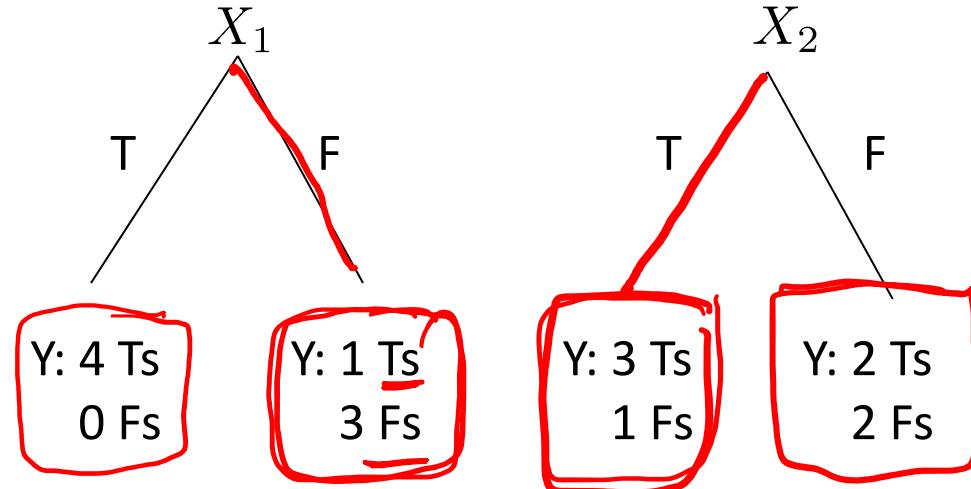
?

# Information Gain

$$\underline{H(Y|X_i)} = \sum_x P(X_i = x) \sum_y P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)$$

| $X_1$ | $X_2$ | $Y$ |
|-------|-------|-----|
| T     | T     | T   |
| T     | F     | T   |
| T     | T     | T   |
| T     | F     | T   |
| F     | T     | T   |
| F     | F     | F   |
| F     | T     | F   |
| F     | F     | F   |

$\frac{1}{2}$



$$H(Y|X_1 = T)$$

$$\frac{1}{2} \left( -1 \log_2 1 - 0 \log_2 0 = 0 \right)$$

$$H(Y|X_1 = F)$$

~~$$\frac{1}{2} \left( -\frac{1}{4} \log_2 \frac{1}{4} - \frac{2}{4} \log_2 \frac{2}{4} \right)$$~~

$$H(Y|X_2 = T)$$

~~$$\frac{1}{2} \left( -\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \right)$$~~

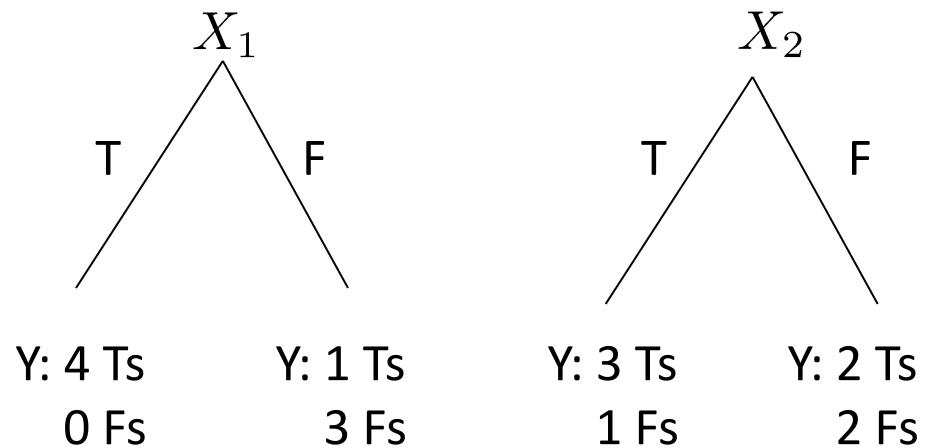
$$H(Y|X_2 = F)$$

$$-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \cdot \frac{1}{2}$$

# Information Gain

$$H(Y | X_i) = - \sum_x P(X_i = x) \sum_y P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)$$

| $X_1$ | $X_2$ | $Y$ |
|-------|-------|-----|
| T     | T     | T   |
| T     | F     | T   |
| T     | T     | T   |
| T     | F     | T   |
| F     | T     | T   |
| F     | F     | F   |
| F     | T     | F   |
| F     | F     | F   |



$$\hat{H}(Y|X_1) = -\frac{1}{2}[1 \log_2 1 + 0 \log_2 0] - \frac{1}{2}[\frac{1}{4} \log_2 \frac{1}{4} + \frac{3}{4} \log_2 \frac{3}{4}]$$

$$\hat{H}(Y|X_2) = -\frac{1}{2}[\frac{3}{4} \log_2 \frac{3}{4} + \frac{1}{4} \log_2 \frac{1}{4}] - \frac{1}{2}[\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2}]$$

$$\hat{H}(Y|X_1) < \hat{H}(Y|X_2)$$

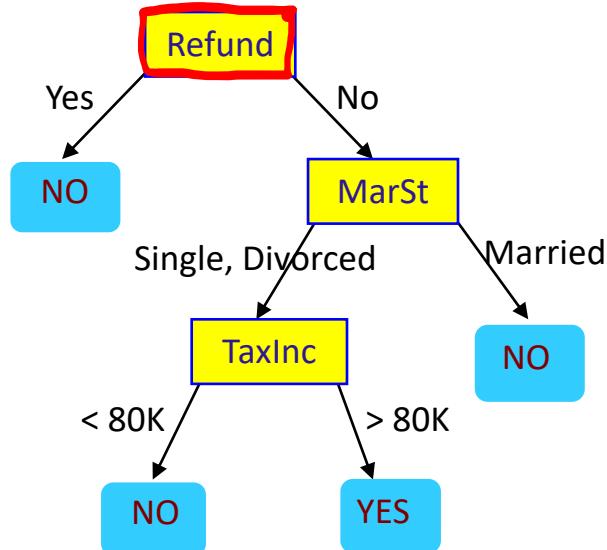
# How to learn a decision tree

- Top-down induction [ID3, C4.5, C5, ...]

Main loop:

C4.5

1.  $X \leftarrow$  the “best” decision feature for next *node*
2. Assign  $X$  as decision feature for *node*
3. For “best” split of  $X$ , create new descendants of *node*
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then  
STOP, Else iterate over new leaf nodes
6. Prune back tree to reduce overfitting
7. Assign majority label to the leaf node



# Handling continuous features (C4.5)

*best split*

Convert continuous features into discrete by setting a threshold.

What threshold to pick?

Search for best one as per information gain. Infinitely many??

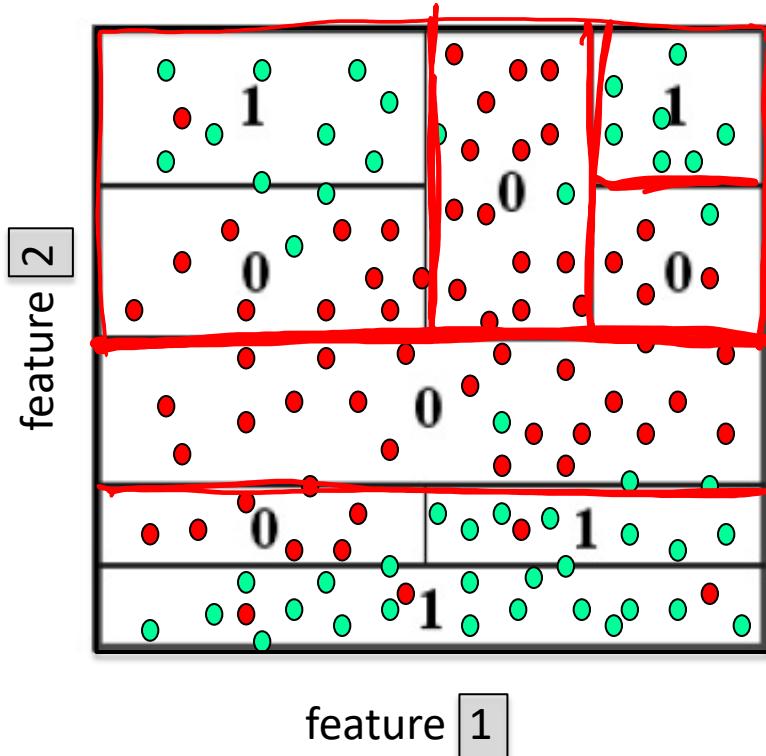
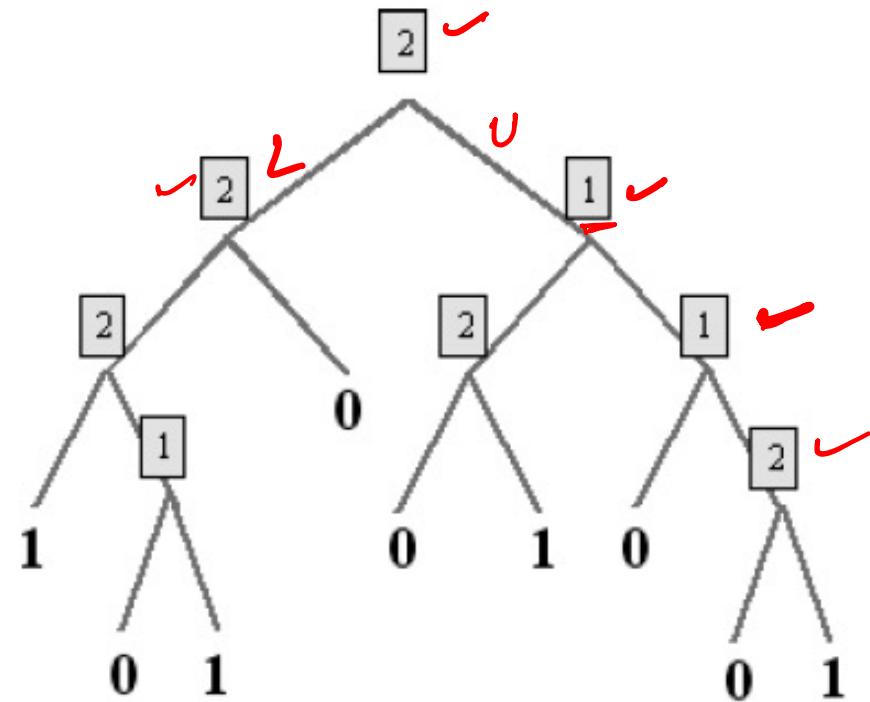
Don't need to search over more than  $\sim n$  (number of training data), e.g. say  $X_1$  takes values  $x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(n)}$  in the training set. Then possible thresholds are

$$[x_1^{(1)} + x_1^{(2)}]/2, [x_1^{(2)} + x_1^{(3)}]/2, \dots, [x_1^{(n-1)} + x_1^{(n)}]/2$$



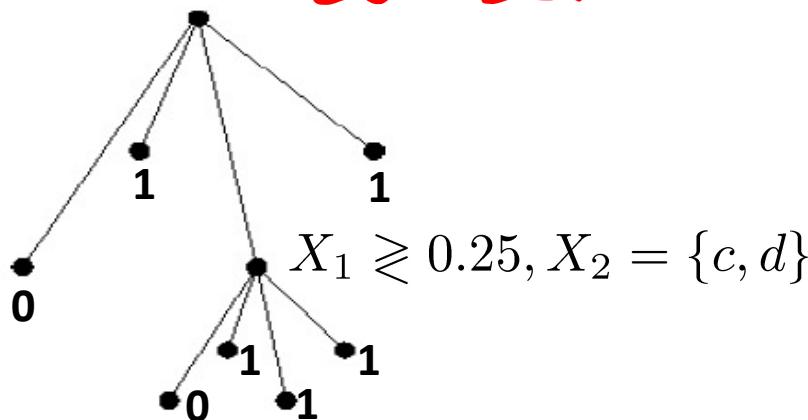
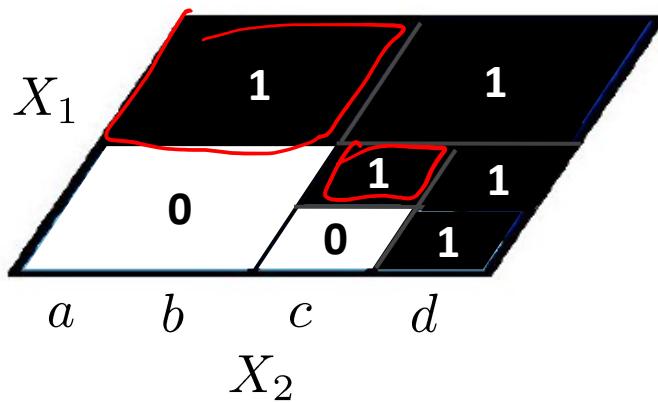
# Dyadic decision trees

(split on mid-points of features)



# Decision Tree more generally...

$$X_1 \geq 0.5, X_2 = \{a, b\} \text{ or } \{c, d\}$$

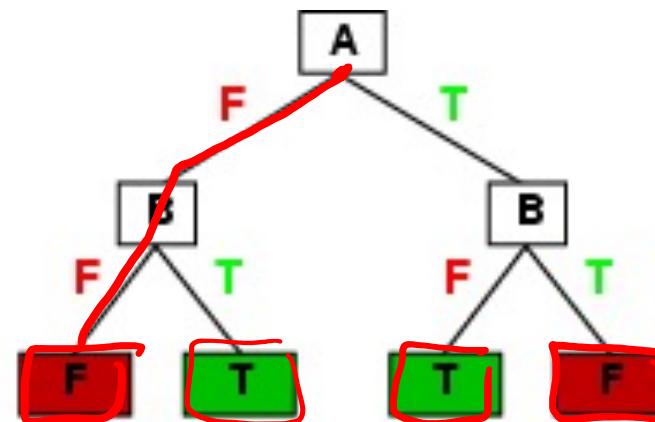


- Features can be discrete, continuous or categorical
- Each internal node: test some set of features  $\{X_i\}$
- Each branch from a node: selects a set of value for  $\{X_i\}$
- Each leaf node: prediction for  $Y$

# Expressiveness of Decision Trees

- Decision trees in general (without pruning) can express any function of the input features.
- E.g., for Boolean functions, truth table row  $\rightarrow$  path to leaf:

|   | A | B | $A \text{ xor } B$ |
|---|---|---|--------------------|
| → | F | F | F                  |
| → | F | T | T                  |
| → | T | F | T                  |
| → | T | T | F                  |



- There is a decision tree which perfectly classifies a training set with one path to leaf for each example - **overfitting**
- But it won't generalize well to new examples - prefer to find more **compact** decision trees

# Pruning the tree

- Many strategies for picking simpler trees:

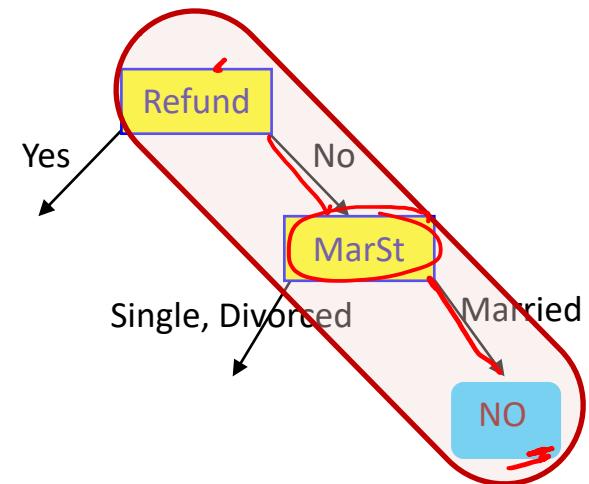
- Pre-pruning

- Fixed depth (e.g. ID3) ✓
  - Fixed number of leaves ✓

- Post-pruning

- Chi-square test
    - Convert decision tree to a set of rules
    - Eliminate variable values in rules which are independent of label (using chi-square test for independence)
    - Simplify rule set by eliminating unnecessary rules

- Information Criteria: MDL(Minimum Description Length) ↵



# Information Criteria

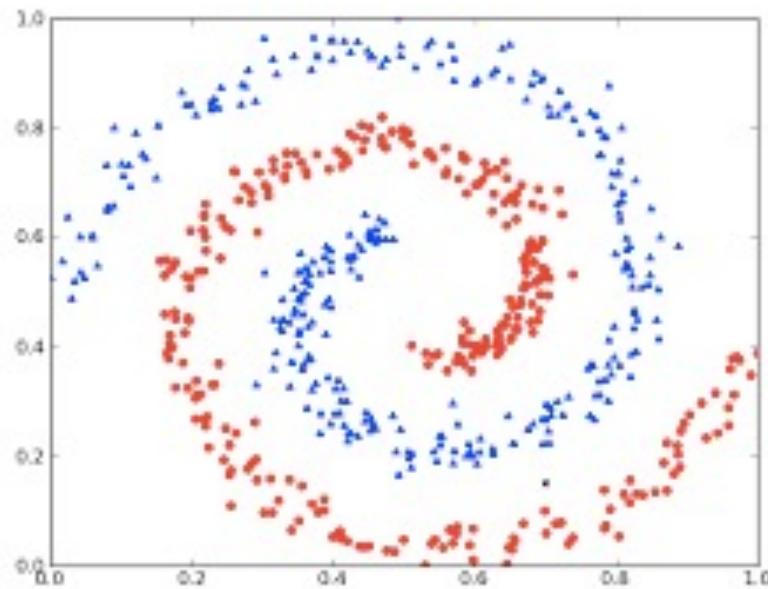
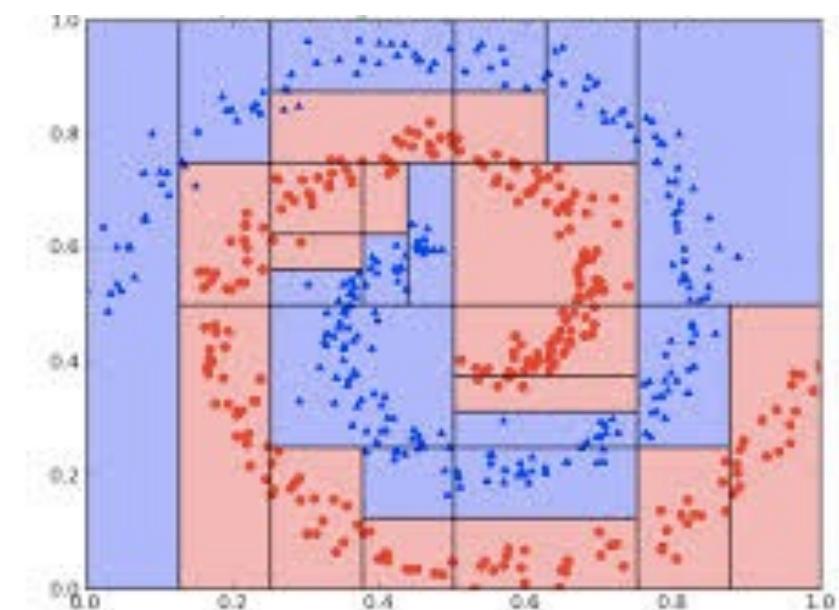
- Penalize complex models by introducing cost

$$\begin{aligned}
 \text{loss}(\hat{f}_T(X_i), Y_i) &= (\hat{f}_T(X_i) - Y_i)^2 && \text{regression} \\
 &= \mathbf{1}_{\hat{f}_T(X_i) \neq Y_i} && \text{classification}
 \end{aligned}$$

$\text{pen}(T) \propto |T|$       penalize trees with more leaves ✓

CART – optimization can be solved by dynamic programming

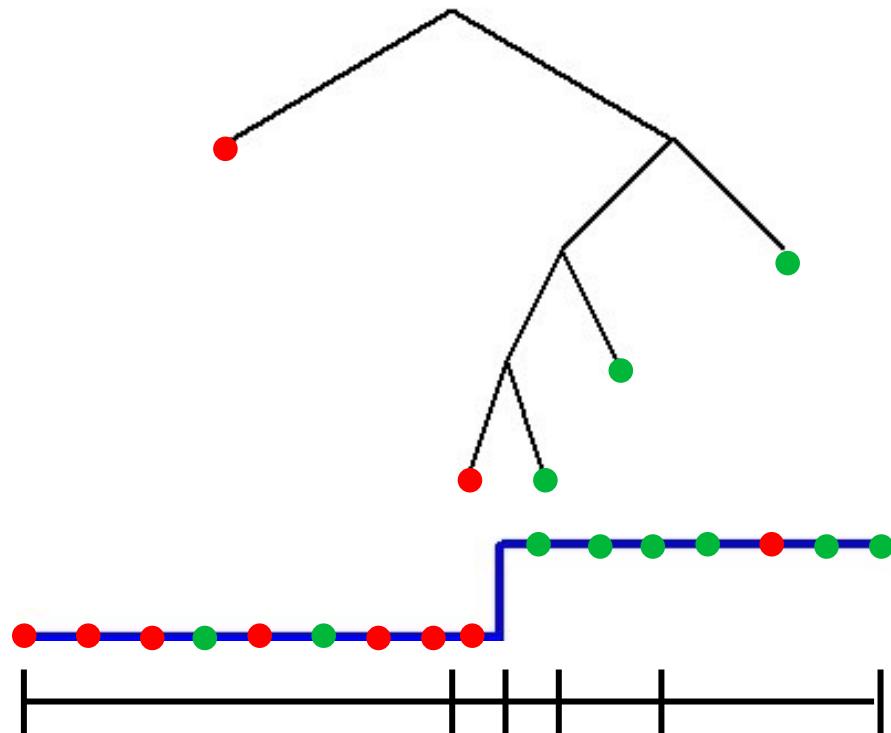
# Example of 2-feature decision tree classifier



# How to assign label to each leaf

Classification – Majority vote

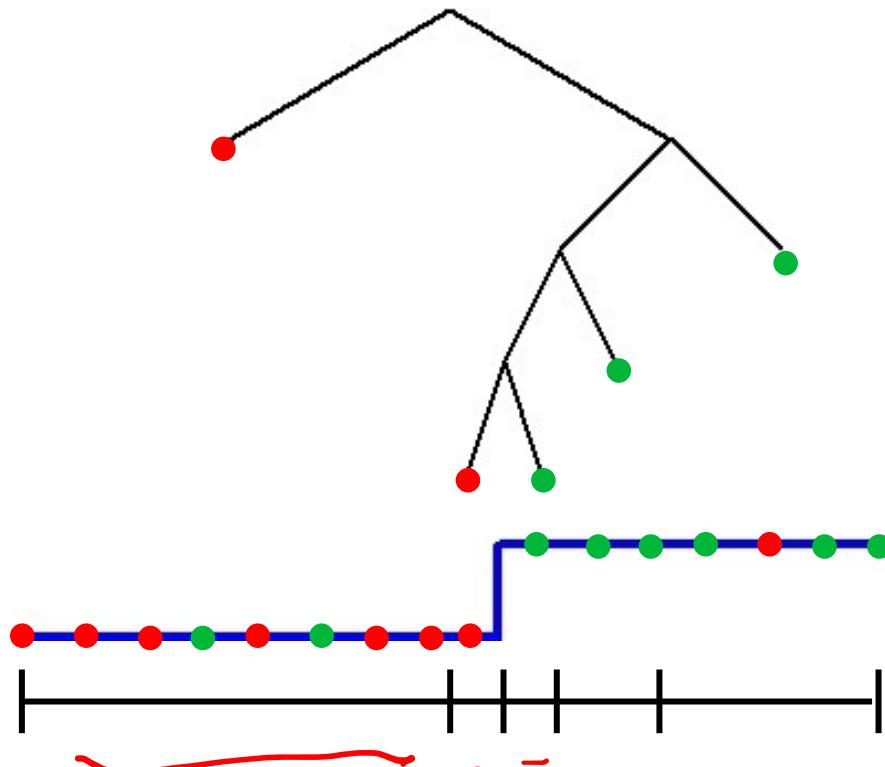
Regression – ?



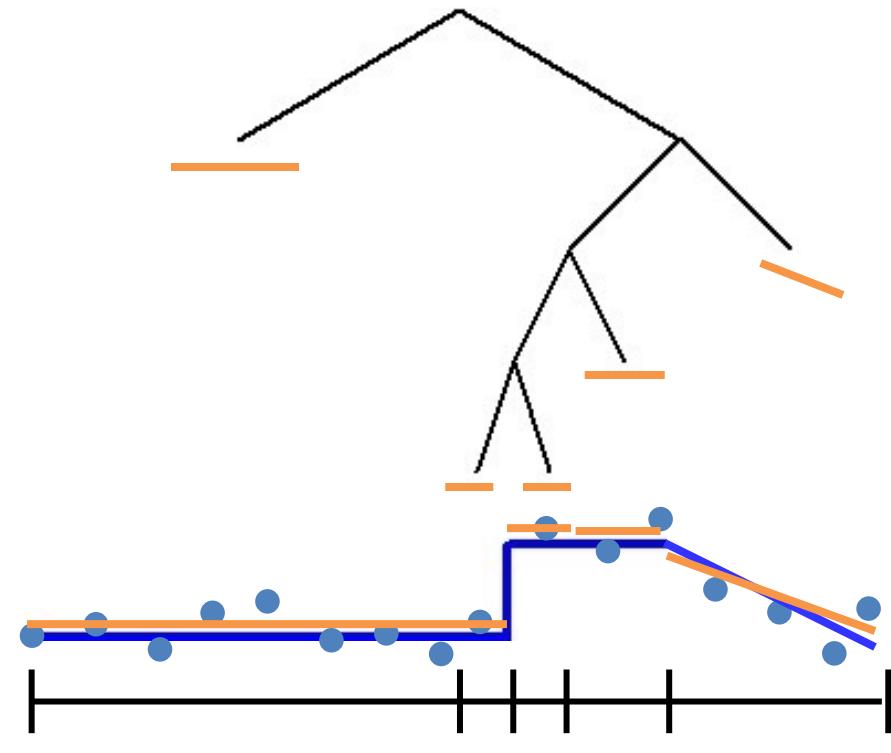
# How to assign label to each leaf

$\text{bin} = \text{leaf}$

Classification – Majority vote



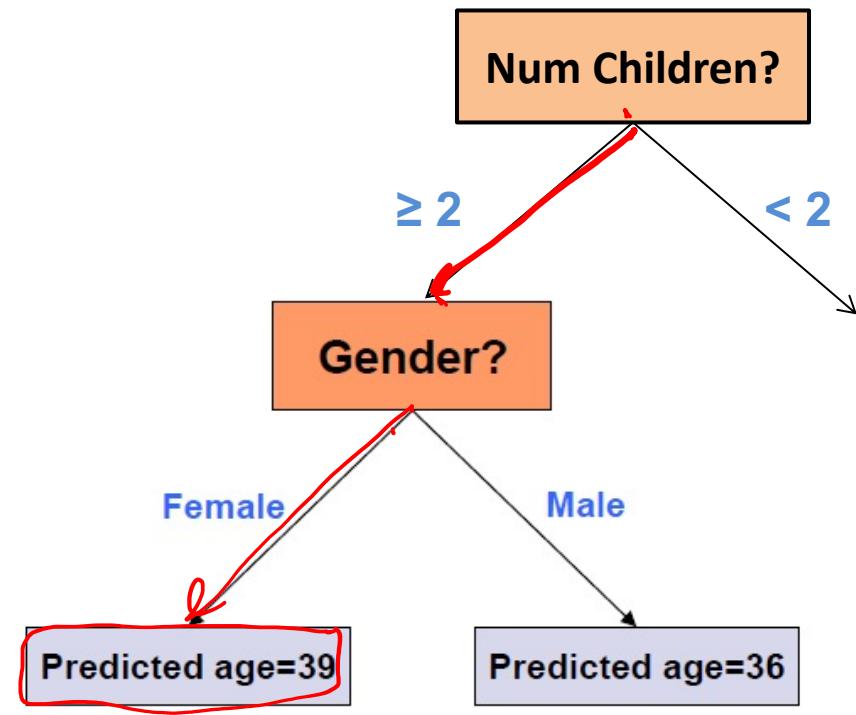
Regression – Constant/  
Linear/Poly fit



# Regression trees

$X^{(1)}$  ...  $X^{(p)}$   $Y$

| Gender | Rich? | Num. Children | # travel per yr. | Age |
|--------|-------|---------------|------------------|-----|
| F      | No    | 2             | 5                | 38  |
| M      | No    | 0             | 2                | 25  |
| M      | Yes   | 1             | 0                | 72  |
| :      | :     | :             | :                | :   |



Average (fit a constant) using training data at the leaves

# What you should know

- Decision trees are one of the most popular data mining tools
  - Simplicity of design
  - Interpretability ✓
  - Ease of implementation
  - Good performance in practice (for small dimensions)
- Information gain to select attributes (ID3, C4.5,...)
- Decision trees will overfit!!!
  - Must use tricks to find “simple trees”, e.g.,
    - Pre-Pruning: Fixed depth/Fixed number of leaves
    - Post-Pruning: Chi-square test of independence
    - Complexity Penalized/MDL model selection
- Can be used for classification, regression and density estimation too